Math2310 - Fall '22

Syllabus - Lecture 07

BY GENNADY URALTSEV

Review

- 1 Derivatives of paths
 - <u>defn</u> derivative of a path: the velocity vector

2 More about velocity

- <u>defn</u> speed the magnitude of the velocity
- direction of velocity: the unit tangent vector

3 Vector operations on paths:

- exmpl Finding projections of a path onto a planes
- exmpl Avioding component computation

Topics

1 Calculus for curves

- Product rule for curves
 - $\circ \quad \underline{\texttt{prop}} \text{ with proof: } \tfrac{\mathrm{d}}{\mathrm{d}t}(\vec{p}(t)\cdot\vec{q}(t)) = \dot{\vec{p}}(t)\cdot\vec{q}(t) + \vec{p}(t)\cdot\dot{\vec{q}}(t)$
- Chain rule for curves
- The derivative of the norm: $t \mapsto \|\vec{p}(t)\|$

2 Fundamental theorem of calculus for curves

- The integral of a vector function:
 - \circ examples
 - motivation and physical meaning
- Fundamental theorem of calculus for curves
 - $\circ~$ The integral as the inverse of the derivative: from the quantity to its rate of change and back again

3 Velocity vector - further applications

• The rate of change of distance to a point

• The rate of change of distance to a plane

References

Textbook

- [Ste] Chap 13.1 Vector Functions and Space Curves (complete)
- [Ste] Chap 13.2 Derivatives and Integrals of Vector Functions (complete)
- [Ste] Chap 13.3 pp904-906 (stop at curvature)

Additional material