Math2310 - Fall '22

Syllabus - Lecture 01
by Gennady Uraltsev

Review

First day of class :) Welcome!

Topics

1 What are vector spaces and vectors?

- What are vectors and vector spaces?
- algebraic representation of vectors in \mathbb{R}^{2} and \mathbb{R}^{3} : tuples of real numbers.
- visual representation of vectors in \mathbb{R}^{2} and \mathbb{R}^{3} : points and/or arrows.
- rmk Right-handedness/orientation of representation in \mathbb{R}^{2} and \mathbb{R}^{3}.
- rmk Do not use two arrows on coordinate axis!
- defn the meaning of the words: vector space, point, component, dimension, projection.
- defn scalars.
- the vectors $\overrightarrow{0}$ in all dimensions: defn the origin.
- notation
- Vectors are denoted with an arrow or with boldface: \vec{u} or \boldsymbol{u}.
- Coordinate representation of vectors is given by row or column vectors:

$$
\vec{u}=(1,2,3) \text { or } \vec{u}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text {. }
$$

- Components are represented by indexes: $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}$: exmpl if $\vec{u}=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$ then $u_{1}=3, u_{2}=4, u_{3}=5$.

2 Operations on vectors: addition, multiplication by scalars

- algebra of vectors:
- addition
- multiplication by scalars
- factoring out scalar multiples
- graphical visualization of algebra of vectors
- addition corresponds to tail to end.
- multiplication by scalars correspond to scaling/zooming
- addition corresponds also to translation
- coordinates and basis vectors:
- defn standard basis: the vectors \hat{e}_{1}, \hat{e}_{2} of \mathbb{R}^{2} and the vectors $\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$ of \mathbb{R}^{3}
- defn representing a vector in the standard basis (briefly mentioned in class, [Ste] pp 841)
- the relation of the coordinates of the vectors with their standard basis representation
- que What is a good notion for "a collection of basis vectors in \mathbb{R}^{3} "? (not discussed in course yet)
- Notation for sets
- notation representing sets using curly braces: for example

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}: x>y\right\}
$$

or equivalently

$$
A=\left\{\vec{u} \in \mathbb{R}^{3}: u_{1}>u_{2}\right\}
$$

- notation representing sets using equation form: for example

$$
A=\left\{(x, y, z) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

or equivalently

$$
A=\left\{\vec{u} \in \mathbb{R}^{2}: u_{1}^{2}+u_{2}^{2}=1\right\} .
$$

- notation representing sets using parametric form: for example

$$
A=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z)=(1,0,0)+\lambda(1,2,3), \lambda \in \mathbb{R}\right\}
$$

or the shorter version

$$
A=\left\{(1,0,0)+\lambda(1,2,3) \in \mathbb{R}^{3}, \lambda \in \mathbb{R}\right\}
$$

or even shorter

$$
A=\{(1,0,0)+\lambda(1,2,3), \lambda \in \mathbb{R}\}
$$

- Typical questions of analytic geometry (only questions, no answers given in class yet):
- que given 3 points in \mathbb{R}^{3} find a plane passing through them
- que given 4 points in \mathbb{R}^{3} determine if they line in the same plane
- que given 2 points in \mathbb{R}^{2} or \mathbb{R}^{3} find the line passing through them
- que given 2 points in \mathbb{R}^{2} or \mathbb{R}^{3} determine if a third point lies on it
- que given 2 lines in \mathbb{R}^{2} or \mathbb{R}^{3} determine if they are parallel
- que given 2 lines in \mathbb{R}^{3} determine if they lie in the same plane
- que what is the angle between to lines through the origin in \mathbb{R}^{2} ?
- que what is the angle between to lines through the origin in \mathbb{R}^{3} ?

References

Textbook

Textbook references pages in
James Stewart, Saleem Watson, Daniel K. Clegg - Multivariable Calculus, Metric Edition - 9th edition - Cengage Learning

- [Ste] Ch 12.1 pp 829-836 (complete)
- [Ste] Ch 12.2 pp 837-847 (complete)

Videos

- Representing points in 3d | Multivariable calculus | Khan Academy
- The Vector Equation of Lines | Multivariable Calculus

Additional material

Videos

- Vectors | Chapter 1, Essence of linear algebra
- Linear combinations, span, and basis vectors | Chapter 2, Essence of linear algebra

Geogebra applets

- Adding Vectors - GeoGebra
- Adding Vectors Geometrically - GeoGebra
- 3D Vector visualization - GeoGebra
- Vector Addition (3D) - GeoGebra

