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Summary

In this work we are concerned with developing a systematic framework for dealing with the
Carleson operator

Cf(z) := sup
c

∣∣ˆ +∞

c

f̂(ξ)e2πiξzdξ
∣∣ (0.1)

and its variational counterpart given by

Crf(z) = sup
···<ck<ck+1<···

(∑
k∈Z

∣∣ˆ ck+1

ck

f̂(ξ)e2πiξz
∣∣r)1/r

. (0.2)

The boundedness on Lp(R) with p ∈ (1,∞) of these operators implies the famous Carleson’s
Theorem on the almost everywhere convergence of the Fourier integral for functions in Lp(R).
As a matter of fact, given f ∈ Lp(R) it holds that{

z ∈ R : lim
N→∞

ˆ N

−N
f̂(ξ)e2πiξzdξ doesn’t exists

}
⊂ {z ∈ R : Crf(z) = +∞}

for any r ∈ [1,∞). If Crf ∈ Lp(R) then the sets above have vanishing Lebesgue measure.
The Carleson operator is a prototypical operator with modulation symmetry and the main set of
techniques for dealing with such operators is often referred to as time-frequency analysis. These
techniques were originally introduced by Carleson in his seminal paper [Car66] on the conver-
gence of Fourier series for L2

(
[−π/2, π/2)

)
with many further advancements. Hunt [Hun68]

extended Carleson’s result to functions in Lp
(
[−π/2, π/2)

)
with p ∈ (2,∞). Fefferman [Fef73]

gave an alternative proof of Carleson’s result which actually introduced the operator (0.1). In
[LT00] Lacey and Thiele gave another proof of boundedness of (0.1) that used elements of both
Carleson’s and Fefferman’s approach in a setting that was generalized in [OSTTW12] to deal
with (0.2). Time-frequency analysis techniques were also used to study other operators with
modulation symmetries, like the Bilinear Hilbert Transform, that are beyond the scope of this
exposition.
In this thesis we elaborate and expand on outer-measure Lp spaces introduced in [DT15] and
therein applied to the Bilinear Hilbert Transform, an operator with the same symmetries as
(0.1). The main novelty of this approach is that bounds are obtained for so-called embedding
maps. Generally speaking, an embedding map provides a representation of a function by a set of
coefficients on the symmetry space of the problem at hand. Outer-measure Lp spaces represent
the correct functional framework for dealing with embedding maps. In turn, the bounds on the
embedding maps allow one to bound operator at hand via a wave packet representation.
Furthermore, it has been shown in [DPDU16] that iterated outer-measure Lp spaces introduced
in [Ura16] correctly encode the locality properties of the operators (0.1) and (0.2). In that paper,
similarly to how it is done in [CDPO16] for the Bilinear Hilbert Transform, the authors manage
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to deduce from the bounds on the embeddings that the Carleson and the Variational Carleson
operators can be bounded by positive sparse forms. The theory of weighted bounds for sparse
forms is well-understood (see [LN15] and [CDPO16]) and as a consequence we are able to give
a complete answer to an open question about weighted bounds for operators (0.1) and (0.2).
Partial progress for this problem has been made previously in [DL12a].
We now illustrate the main idea behind the reduction of the bounds for the operators (0.1) and
(0.2) to the bounds for embedding maps. Suppose that f ∈ S(R) in the expressions (0.1) and
(0.2). Fix a Borel-measurable stopping function c : R → R and a function a ∈ S(R) or, in the
case of (0.2), an increasing sequence c : Z×R→ R of Borel-measurable stopping functions and a
a ∈ S

(
R; lr

′
(Z)
)

i.e. a smooth, rapidly decaying function with values in lr
′

sequences. Then the
wave packet representation

ˆ
R

ˆ ∞
c(z)

f̂(ξ)e2πiξza(z)dξdz =

ˆ
R3
+

F (y, η, t)A(y, η, t)dydηdt (0.3)

holds for the dual form of (0.1), while∣∣∣∑
k∈Z

ˆ
R

ˆ ck+1(z)

ck(z)

f̂(ξ)e2πiξzak(z)dξdz
∣∣∣ ≤ ˆ

R3
+

F (y, η, t)A(y, η, t)dydηdt (0.4)

holds for the dual form of (0.2).
The space R3

+ := R × R × R+ appearing on the right parametrizes the translation, modulation
(Fourier translation), and dilation symmetries. The embedded function F is given by

F (y, η, t) := f ∗ ψη,t(y) with ψη,t(y) := eiηyt−1ψ
(y
t

)
(0.5)

where ψ ∈ S(R) is an appropriately chosen base wavelet. The embedded functions A and A are
defined respectively as

A(y, η, t) :=

ˆ
R
a(z)ψ

c(z)
η,t (y − z)dz

A(y, η, t) :=
∑
k∈Z

ˆ
R
ak(z)ψ

ck(z),ck+1(z)
η,t (y − z)dz

(0.6)

where ψcη,t and ψ
c−,c+
η,t are “truncated” wave packets whose definition is somewhat more involved

and can be found in Chapter 2.
The main result of [Ura16] (Chapter 2) consists of showing that bounds

‖A‖Lp-LqSm .p,q ‖a‖Lp ∀p ∈ (1,∞], q ∈ (1,∞] (0.7)

‖A‖Lp-LqSm .p,q ‖a‖Lplr′ ∀p ∈ (1,∞], q ∈ (r′,∞], r′ ∈ [1, 2) (0.8)

‖F‖Lp-LqSe .p,q ‖f‖Lp ∀p ∈ (1,∞], q ∈ (min(2, p′),∞] (0.9)

hold with a constant independent of the stopping functions c and c appearing in (0.6). The quasi-
norms appearing on the left are a shorthand notation for the so called iterated outer-measure Lp

quasi-norms. This is the main novelty of the approach of [Ura16] with respect to previous works
that use the outer-measure Lp space framework ([DT15], [DPO15]).
Abstract results about outer-measure spaces imply that∣∣∣ˆ

R3
+

F (y, η, t)A(y, η, t)dydηdt
∣∣∣ . ‖F‖Lp-LqSe‖A‖Lp′ -Lq′Sm
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and ∣∣∣ˆ
R3
+

F (y, η, t)A(y, η, t)dydηdt
∣∣∣ . ‖F‖Lp-LqSe‖A‖Lp′ -Lq′Sm

as long as (p, p′) and (q, q′) are Hölder dual exponents i.e. 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

The representation (0.3) with bounds (0.7) and (0.9) thus imply the bounds∥∥∥Cf∥∥∥
Lp

.p ‖f‖Lp ∀p ∈ (1,∞).

Similarly, the representation (0.4) and bounds (0.8) and (0.9) imply that the bounds∥∥∥Crf∥∥∥
Lp

.p ‖f‖Lp ∀p ∈ (r′,∞)

hold as long as r ∈ (2,∞]. This is known from [OSTTW12] to be the complete range of exponents
where strong bounds for (0.2) hold.
Furthermore, bounds by sparse forms can be obtained from the wave packet representations (0.3)
and (0.4) and bounds (0.7), (0.8), and (0.9). A sparse bilinear form is a map of the form

(f, a) 7→
∑
I∈S

|I|
( 
I

|f |s
)1/s( 

I

|a|t
)1/t

for s, t ∈ (1,∞), where S is a sparse grid. We say that a collection of intervals S is a sparse grid
if there exists a constant C > 1 such that for any interval I it holds that∑

J∈S
J⊂I

|J | ≤ C|I|. (0.10)

If p > s, p′ > t and 1
p + 1

p′ = 1, we show that sparse forms associated with sparse grids with

uniform sparseness constants are bounded uniformly on Lp × Lp′ . Furthermore, weighted Lp

theory is also well-established for such forms, but it is beyond the scope of this exposition. It
can be shown that the dual forms to (0.1) and (0.2) can be bounded by sparse forms in the sense
that ∣∣ˆ

R
Cf(x)a(x)dx

∣∣ .s sup
S

∑
I∈S

|I|
( 
I

|f |s
)1/s  

I

|a| ∀s > 1

∣∣ˆ
R
Crf(x)a(x)dx

∣∣ .r,s sup
S

∑
I∈S

|I|
( 
I

|f |s
)1/s  

I

|a| ∀s > r′
(0.11)

where the supremum is taken over all sparse grids S with uniform sparseness.

Outline

This thesis is structured into three Chapters. Chapter 1 contains an introduction to outer
measure spaces and an outline of the proof of the bounds of the Carleson Operator (0.1) in the
simplified Walsh case.
In Section 1.1 we present the generalities of outer-measure spaces. We begin with the definitions
and some basic examples; then we continue with the most important properties of outer-measure
spaces such as the outer-measure Hölder’s inequality, interpolation properties, and domination
results. This section generally follows [DT15], albeit with a somewhat different notation. Some
proofs are omitted and can be found in the above paper.
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Next, in Section 1.2 we present some basic results from time-scale analysis i.e. Calderón-Zygmund
theory. We do not claim originality, generality, nor completeness but rather we aim at showing
that outer-measure Lp framework has enough flexibility to express classical concepts. The full
power of outer-measure Lp space approach can be seen in the following sections related to time-
frequency analysis.
Sections 1.3 and 1.4 are respectively dedicated to presenting the results of [Ura16] and [DPDU16]
for the technically simpler Walsh model of (0.1). We also avoid dealing with the variational
counterpart (0.2).
In Section 1.3.1 we begin by introducing the Walsh group as an effective model for dealing with
translation, modulation, and dilation symmetries. In Section 1.3.2 we prove the wave packet
representation (0.3) for the real version of the Carleson operator. In Section 1.3.3 we use this
representation to correctly deduce the Walsh model for the Carleson operator and to introduce
the outer-measure Lp space structure on the Walsh model for the time-frequency plane. We also
reduce the bounds for the Walsh Carleson operator to the bounds on the Walsh analogues of
the embedding maps (0.5) and (0.6). In Sections 1.3.4 and 1.3.5 we prove the bounds on these
embedding maps.
In Section 1.4 we talk about iterated outer-measure Lp spaces the in the Walsh model case. In
Section 1.4.1 we prove the bounds (0.9) in the Walsh model case. In Section 1.4.2 we prove the
bounds (0.7) in the Walsh model case. Finally in Section 1.4.3 we show how these bounds can
be used to obtain sparse domination for the Walsh model of (0.1).
Chapter 2 contains the results of the paper [Ura16] while Chapter 3 contains the results of the
paper [DPDU16].



Chapter 1

The Carleson Operator and outer
measure spaces

Where is horse?

–S.T.

1.1 Generalities of outer measure spaces

Outer-measure Lp space requires introducing two objects: an outer measure that measures “how
large” a set is and a size that measures “how large” functions are.
We will restrict to working with a space X that is a separable complete metric space (Polish
space). While the theory can possibly be developed in greater generality, this is beyond the
scope of this exposition.

1.1.1 Outer measures and sizes

The concept of an outer measure is, by itself, classical. Standard construction of the Lebesgue
measure theory makes an interim use of an outer measure and then restricts to considering
Carathéodory measurable sets. In the following, we do not restrict to such a “good” class of sets:
in many applications this class would be trivial.

Definition 1.1 (Outer measure). An outer measure µ on X is a positive, monotone, σ-sub-
additive set function i.e. a function µ : P(X)→ [0,+∞] defined on subsets of X that satisfies the
following properties:

1. µ(∅) = 0;

2. (monotonicity) given two subsets E,E′ ⊂ X

E ⊂ E′ =⇒ µ(E) ≤ µ(E′);

3. (σ-subadditivity) for any countable collection (En ⊂ X)n∈N of subsets of X one has

µ
( ⋃
n∈N

En

)
≤
∑
n∈N

µ(En).
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We call the pair (X, µ) an outer measure space. For example, Rn endowed with the Carathéodory
outer measure associated to the Lebesgue measure is an outer measure space.
Outer measures are often may be generated by a pre-measure (term used here with a somewhat
different meaning than in literature). Let us fix a distinguished collection T of Borel subsets of
X and a set function µ : T→ [0,+∞]. The outer measure generated by µ, defined on any subset
E ⊂ X is given by

µ(E) = inf
{∑
T∈T

µ(T ) :
⋃
T∈T

T ⊃ E
}
. (1.1)

The lower bound is taken over all countable coverings T of E made of generating sets from T.
Clearly, µ is an outer measure. While it is often the case, it is not generally true that µ(T ) = µ(T )
for T ∈ T.
We say the X is σ-finite with respect to the outer measure µ if

X =
⋃
n∈N

Xn µ(Xn) <∞. (1.2)

If µ <∞ on T and X =
⋃
T∈T T then (X, µ) is σ-finite where µ is generated by µ.

Apart from the classical Lebesgue-Carathéodory outer measure, another important example of
an outer measure space is given by the upper half-space

R2
+ =

{
(x, s) ∈ R× R+

}
endowed with Carleson tents (see figure 1.1)as the collection T = {T} of generating sets:

T (x, s) = {(y, t) ∈ R2
+ : |y − x| < s− t, t < s}.

t

y

(x, s)

x+ sx− s

Figure 1.1: The tent T (x, s).

We endow these sets with the pre-measure

µ(T (x, s)) = s.

Geometrically, if we associate to each point (x, s) ∈ R2
+ the ball Bs(x) = (x− s, x+ s) of the real

line, then the tent T (x, s) is the set of all balls Bt(y) contained in Bs(x) while µ(T (x, s)) = s =
|Bs(x)|

2
Recall that a set E is Carathéodory measurable if “it can be used to cut arbitrary sets” i.e. for
any A ⊂ R× R+ it must hold that

µ(A) = µ(A ∩ E) + µ(A ∩ Ec).
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We now show that the only Carathéodory measurable sets of this space are ∅ and X itself. Suppose
E ⊂ R×R+ has a non-empty boundary so that we may choose (x0, s0) ∈ ∂E. For an arbitrarily
small ε > 0 let A = T (x0, s+ ε) and since (x0, s0) ∈ ∂E there exists points (x′, s′) ∈ A ∩ E and
(x′′, s′′) ∈ A ∩ Ec with s− ε < s′, s′′ < s+ ε. It can be shown that µ(A ∩ E) ≥ s′ > s− ε since
(x′, s′) ∈ T (y, t) only if t > s and similarly µ(A ∩ Ec) > s− ε. Then E is measurable only if

2s− 2ε < µ(A ∩ E) + µ(A ∩ Ec) = µ(A) ≤ s+ ε.

Since ε > 0 was arbitrary this leads to a contradiction.
We now introduce the concept of a size. It essentially is a quasi-norm on Borel functions that is
lower semi-continuous with respect to pointwise convergence.

Definition 1.2 (Size). A size ‖ · ‖S is a functional on the set of all Borel measurable functions
on X, with values in [0,∞], that satisfies:

1. ( vanishing) if F = 0 then ‖F‖S = 0;

2. ( homogeneity) for any λ ∈ C it holds that ‖λF‖S = |λ| ‖F‖S ;

3. ( quasi-monotonicity) for any two Borel functions Fand G one has

|F | < |G| =⇒ ‖F‖S . ‖G‖S ;

4. (σ-quasi-triangle inequality) there exists a triangle constant cs such that for any sequence
of Borel functions Fn one has ∥∥∑

n∈N

Fn
∥∥
S
≤
∑
n∈N

cn+1
s ‖Fn‖S (1.3)

as long as the sum on the left converges pointwise.

Similarly to pre-measures, sizes may be generated by “local” sizes. Consider a distinguished
collection T of subsets of X and suppose that they are Borel measurable. For each T ∈ T let
there be a size ‖ · ‖S(T ) defined on Borel functions on T . We say that ‖ · ‖S(T ) generate ‖ · ‖S if

‖F‖S = sup
T∈T
‖F‖S(T ) (1.4)

1.1.2 Outer LP spaces

Given the an outer measure and a size we can introduce an outer-measure integral and outer-
measure Lp spaces.
The outer-Lp quasi-norms for p ∈ (0,∞) are give by

‖G‖pLpS :=

ˆ
λ∈R+

pλpµ
(
‖G‖S > λ

)dλ

λ
; (1.5)

weak outer Lp quasi-norms are similarly given by

‖G‖pLp,∞S := sup
λ∈R+

λpµ
(
‖G‖S > λ

)
. (1.6)

The S, µ - super-level outer measure is given by

µ (‖G‖S > λ) := inf
{
µ(Eλ) : ‖G1X\Eλ‖S ≤ λ

}
(1.7)
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where the lower bound is taken over Borel subset Eλ of X.
The outer Lp spaces are subspaces of Borel functions on X for which the above norms are finite.
The expressions defining outer Lp quasi-norms are based on the super-level set representation of
the Lebesgue integral, however the expression µ

(
‖G‖S > λ

)
that appears in lieu of the classical

µ
(
{x : |g(x)| > λ}

)
if generally not a measure of any specific set.

Intuitively, outer measure Lp spaces represent interpolation spaces between the outer measure
of the support of a function and the size. Given a Borel function F we say that spt(G) ⊂ E if
‖1X\EG‖S = 0 and we define

µ(spt(G)) = inf
{
µ(E) : spt(G) ⊂ E

}
.

Given two functions G1 and G2 we identify them if µ
(
spt(G1 − G2)

)
= 0. From now on we

denote by G ∈ B(X) the equivalence classes of Borel functions w.r.t to this relation. We also
introduce the convention that +∞ · 0 = 0 ·+∞ = 0.
Let us make two examples of outer measure spaces and sizes. First of all, outer measure Lp spaces
encompass Lebesgue spaces. As a matter of fact consider Rn and let the generating collection T
consist of balls Br(x) = {y : |y − x| < r} with rational centers x ∈ Qd and rational radii r ∈ Q+.
Let

µ(Br(x)) = |Br(x)| ≈n rn

so that the generated outer measure µ becomes the familiar Carathéodory outer measure obtained
via countable coverings with Euclidean balls. Set the size ‖ · ‖S to be

‖f‖S = sup
x∈Rn

|f(x)|.

so that it clearly satisfies all the conditions. Notice that

µ
(
‖f‖S > λ

)
= Ln

(
{x : |f(x)| > λ}

)
where Ln is the standard Lebesgue measure on Rn. This follows since if ‖f1Rn\E‖S ≤ λ then
E ⊃ {x : |f(x)| > λ} and on Borel sets one has µ = Ln.
The size S can be generated by a family of local sizes. For every ball B ∈ T define the size
‖ · ‖S(B) as

‖f‖S(B) :=

 
B

|f(x)|dx =
1

|B|

ˆ
B

|f(x)|dx.

By the Lebesgue differentiation theorem

‖f‖S = sup
B
‖f‖S(B).

Thus the integral defined by (1.5) coincides with the classical Lebesgue definition. While in
this example using integral type local sizes is a meaningless complication, this approach presents
significant advantages for the applications in this thesis.

1.1.3 Properties of outer measure Lp spaces

Outer measure Lp spaces have many important properties related to interpolation. We begin by
illustrating quasi-subadditivity, Chebyshev’s inequality, logarithmic convexity of outer Lp norms,
the outer Hölder inequalities, and real interpolation. We will also illustrate a useful measure
atomic decomposition property. Some of the more straightforward proofs will be ommitted.
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Proposition 1.3 (Quasi subadditivity). For any p ∈ (0,∞) we have that ‖F + G‖LpS .p
‖F‖LpS + ‖G‖LpS

Proposition 1.4 (Chebyshev’s inequality). For any p ∈ (0,∞) we have that ‖F‖Lp,∞S .p
‖F‖LpS i.e. for any λ > 0

µ
(
‖F1X\Eλ‖S > λ

)
.p
‖F‖pLpS
λp

Proposition 1.5 (Logarithmic convexity of Lp norms). Let (X, µ) be an outer measure space
with size ‖ · ‖S and let F be a Borel function on X. For every θ ∈ (0, 1) and for 1

pθ
= 1−θ

p0
+ θ

p1

with p0, p1 ∈ (0,∞], p0 6= p1 the inequality

‖F‖LpθS ≤ Cθ,p0,p1‖F‖1−θLp0,∞S‖F‖
θ
Lp1,∞S

holds.

Proof. Suppose p0 < p1 and apply the definition (1.5) to obtain

‖F‖pθLpθS =

ˆ
R+

pθλ
pθµ(‖F‖S > λ)

dλ

λ

≤ pθ‖F‖p0Lp0,∞
ˆ τ

0

λpθ−p0
dλ

λ
+ pθ‖F‖p0Lp1,∞

ˆ ∞
τ

λpθ−p1
dλ

λ

= pθ(pθ − p0)‖F‖p0Lp1,∞τ
pθ−p0 + pθ(p1 − pθ)‖F‖p1Lp1,∞τ

pθ−p1

for any τ > 0. Optimizing in τ gives the result.

Proposition 1.6 (Outer Hölder inequality). Let (X, µ) be an outer measure space endowed with
three sizes ‖ · ‖S, ‖ · ‖S′ , and ‖ · ‖S′′ such that for any Borel functions F and G on X the product
estimate for sizes

‖FG‖S . ‖F‖S′‖G‖S′′ (1.8)

holds. Then for any Borel functions F and G on X the following outer Hölder inequality holds:

‖FG‖LpS . ‖F‖Lp′S′‖G‖Lp′′S′′ (1.9)

for any triple p, p′, p′′ ∈ (0, ∞] of exponents such that 1
p′ + 1

p′′ = 1
p .

Notice however that we do not claim that Hölder’s inequality for outer measure Lp spaces holds
with constant 1, even if the product estimate for sizes does.

Proof. Suppose by homogeneity that ‖F‖Lp′S′ = ‖G‖Lp′′S′′ = 1. Recall that

‖FG‖pLpS = p

ˆ ∞
0

λpµ(‖FG‖S > λ)
dλ

λ
.

The crucial observation is that for some C > 0

µ(‖FG‖S > λ) ≤ µ(‖F‖S′ > C−1λp/p
′
) + µ(‖G‖S′′ > C−1λp/p

′′
). (1.10)

As a matter of fact let Vλ,Wλ ⊂ X be two subsets such that

µ(Vλ) < 2µ(‖F‖S′ > C−1λp/p
′
) ‖F1X\Vλ‖S′ ≤ C

−1λp/p
′

µ(Wλ) < 2µ(‖G‖S′′ > C−1λp/p
′′
) ‖G1X\Wλ

‖S′′ ≤ C−1λp/p
′′
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so that

‖FG1X\(Vλ∪Wλ)‖S . C−2λp/p
′
λp/p

′′

follows from (1.8) and (1.10) holds as long as C is chosen large enough.
We use (1.10) and a change of variable in λ to write

‖FG‖pLpS .
ˆ ∞

0

λpµ(‖F‖ > λp/p
′
)
dλ

λ
+

ˆ ∞
0

λpµ(‖G‖ > λp/p
′′
)
dλ

λ

.
ˆ ∞

0

λp
′
µ(‖F‖ > λ)

dλ

λ
+

ˆ ∞
0

λp
′′
µ(‖G‖ > λ)

dλ

λ
. 1

which concludes the proof.

Proposition 1.7 (Marcinkiewicz interpolation). Let (X, µ) and (Y, ν) be two outer measure space
with sizes ‖ · ‖SX and ‖ · ‖SY respectively. Assume p0, p1, q0, q1 ∈ (0,∞] and let T be an operator
that maps Lp0SX + Lp1SX to Borel function on X such that it satisfies

scaling |T (λF )| = |λT (F )| for all F ∈ Lp0SX + Lp1SX and λ ∈ C;

quasi sub-additivity
|T (F +G)| ≤ C

(
|T (F )|+ |T (G)|

)
for all F,G ∈ Lp0SX + Lp1SX and some C ≥ 1;

weak boundedness
‖T (F )‖Lq0,∞SY ≤ C0‖F‖Lp0SX ∀F ∈ Lp0SX

‖T (F )‖Lq1,∞SY ≤ C1‖F‖Lp1SX ∀F ∈ Lp1SX

Then for any θ ∈ (0, 1), 1
pθ

= 1−θ
p0

+ θ
p1

, and 1
qθ

= 1−θ
q0

+ θ
q1

it holds that

‖T (f)‖LqθSY .θ,p0,1,q0,1 C
1−θ
0 Cθ1‖F‖LpθSX

We omit the proof of the above Proposition. It follows along the lines of classical real interpolation
results. A proof can be found in [DT15].
We finally pass to an important atomic decomposition property for outer Lp spaces. A p-atom
is a function F ∈ B(X) such that

µ(spt(F ))1/p‖F‖S = 1 (1.11)

Proposition 1.8 (p-atomic decomposition). If ‖F‖LpS <∞ there exists a decomposition

F =
∑
k∈Z

λkFk ‖λk‖lp . ‖F‖LpS (1.12)

where Fk are p-atoms.

Proof. It is straightforward to check that∑
k∈Z

2kµ(‖F‖S > 2k/p) ≈ ‖F‖pLpS <∞

Choose subsets Ek ⊂ X such that

‖1X\Ek F‖S ≤ 2k/p µ(Ek) . µ(‖F‖S > 2k/p)
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and thus
∑
k∈Z 2kµ(Ek) ≈ ‖F‖pLpS . We can actually assume that the sets Ek are decreasing. As

a matter of fact
Set Ẽk =

⋃
l≥k El so it holds that

‖1X\Ẽk F‖S ≤ ‖1X\EkF‖S ≤ 2k/p.

while ∑
k∈Z

2kµ(Ẽk) .
∑
k∈Z

2k
∑
l≥k

µ(El) .
∑
l∈Z

2lµ(El)
∑
k≤l

2(k−l) ≈ ‖F‖pLpS .

Now consider the sets ∆Ek = Ẽk \ Ẽk+1 so that

X = (X \ Ẽ−∞) ∪ Ẽ+∞ ∪
(⋃
k∈Z

∆Ek

)
.

where Ẽ+∞ =
⋂
k∈Z Ẽk and Ẽ−∞ =

⋃
k∈Z Ek. Clearly µ(Ẽ+∞) = 0 while ‖F1X\Ẽ−∞‖S = 0 so

F1X\Ẽ−∞ = F1Ẽ+∞
= 0, at least as equivalence classes in B(X).

We may thus write

F =
∑
k

‖F1∆Ek‖S µ(∆Ek)1/p F1∆Ek

‖F1∆Ek‖S µ(∆Ek)1/p
=
∑
k

λkFk

and since ‖F1∆Ek‖S . 2k/p it holds that

‖λk‖plp .
∑
k

2kµ(∆Ek)1/p . ‖F‖pLpS .

It is also clear that Fk are p-atoms.

Let Λ be a sub-linear form on B(X) that is it uniformly bounded on 1-atoms. It follows from the
above decomposition that it is bounded on FL1S i.e. it satisfies |Λ(F )| . ‖F‖L1S .
For outer measures and sizes generated as in (1.1) and (1.4) we have the following differentiation
property.

Proposition 1.9 (Measure differentiation). Suppose that Λ is a sub-linear functional on Borel
functions on an outer measure space (X, µ) i.e.

|Λ(F +G)| ≤ |Λ(F )|+ |Λ(G)| and Λ(λF ) = |λ|Λ(F ),

and suppose that Λ is quasi lower semi-continuous with respect to pointwise convergence i.e.

|Λ(F )| . lim inf |Λ(Fn)| if Fn → Fpointwise.

Let the size ‖ · ‖S be generated by the family of sizes ‖ · ‖S(T ) with T ∈ T while µ is generated by
µ : T→ [0,∞]. If it holds that

1. for every T ∈ T it holds that

|Λ(F1T )| . µ(T )‖F‖S(T ), (1.13)

2. for any E ⊂ X it holds that

µ(E) = 0 =⇒ |Λ(F1E)| = 0,
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3. X is σ-finite as in (1.2).

then for all F ∈ L1S
|Λ(F )| . ‖F‖L1S (1.14)

holds.
Condition 2 can be dropped if ‖F‖S <∞.

Proof. We suppose that ‖F‖L1S is finite, otherwise there is nothing to prove. Consider the
1-atomic decomposition of

F =
∑
k∈Z

λkFk
∑
k∈Z

|λk| . ‖F‖L1S ,

where this equality holds pointwise as equivalence classes in B(X). We postpone checking that
Λ is well defined for equivalence classes in B(X). It is sufficient to check that (1.14) holds for
1-atoms since by subadditivity and lower semi-continuity one has

|Λ(F )| ≤
∑
k∈Z

|λk||Λ(Fk)| . ‖F‖L1S

as long as |Λ(Fk)| . 1. Given an atom A let us choose a covering (Tn ∈ T)n∈N such that∑
n∈N

µ(Tn) . µ(sptA) sptA ⊂
⋃
n∈N

Tn.

Using (1.13) we have that

|Λ(F )| ≤
∑
n∈N

|Λ(F1Tn\
⋃
k>n Tk

)| .
∑
n∈N

µ(Tn)‖F1Tn\
⋃
k>n Tk

‖S . µ(sptA)‖F‖S = 1

as required.
We now check that Λ is well defined for functions in F ∈ B(X). By sub-linearity it is sufficient
to check that Λ(F ) = 0 if µ(sptF ) = 0. Notice that if µ(sptF ) = 0 then there exists a set
K ⊂ X with µ(K) = 0 and ‖F1X\K‖S = 0. As a matter of fact for n ∈ N let Kn ⊂ X such that
µ(Kn) ≤ 2−n and such that ‖F1X\Kn‖S = 0. Setting K =

⋂
k∈N

⋃
n>kKn implies that µ(K) = 0

and by property (1.3) it holds that ‖F1X\K‖S = 0. Since |Λ(F )| ≤ |Λ(F1K)| + |Λ(F1X\K)| we
show that both terms on the right vanish.
Since X is σ-finite let (Tn ∈ T) be a covering with µ(Tn) <∞ and

⋃
n∈N Tn = X. Then

|Λ(F1X\K)| .
∑
n∈N

|Λ(F1Tn\K)| .
∑
n∈N

µ(Tn)‖F1Tn\K‖S = 0

as required.
By 2 we have that

|Λ(F1K)| = 0.

The condition 2 can be dropped if ‖F‖S <∞ since, as before

|Λ(F1K)| . lim inf
n∈N

|Λ(F1Kn)| . lim inf
n∈N

µ(Kn)‖F‖S = 0.

If Λ is an integral with respect to a Borel measure we have the following corollary.
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Corollary 1.10. Let L is a non-negative Borel measure on X and for every T ∈ T let

‖F‖S(T ) =
1

µ(T )

ˆ
T

|F (x)|dL(x)

then if either µ(E) = 0 =⇒ L(E) = 0 for all E ⊂ X or ‖F‖S <∞ then
ˆ

X
|F (x)|dL(x) . ‖F‖L1S .

1.2 Classical Carleson embeddings

The framework of outer measure Lp spaces allows one to obtain some classical results from
Calderón-Zygmund theory. These results rely on studying the classical (time-scale) Carleson
embedding for Lp functions given by

F (y, t) = f ∗ ψt(y) ψt(x) := t−1ψ
(x
t

)
(1.15)

with ψ some base wavelet. For example if

ψ(x) =
1

π

1

x2 + 1

F becomes the Poisson extention into the upper half-plane. Similarly if

ψ(x) =
1

π

x

x2 + 1

then F becomes the harmonic conjugate to the Poisson extention.
Embedding maps actually give a faithful representation of a function as testified by Calderón

reproducing formula. Let ψ,ψ∗ ∈ S(R) be any two functions such that
´
ψ =

´
ψ∗ = 0 and ψ̂ ψ̂∗

is an even, real-valued, non-negative function. Then for any function f ∈ S(R) the following
identity holds pointwise and in L2:

f(x) = Cψ

ˆ +∞

0

f ∗ ψt ∗ ψ∗t (x)
dt

t
(1.16)

where Cψ =
´ +∞

0
ψ̂(t)ψ̂∗(t)dt

t is some constant that depends only on ψ.
Using the Fourier transform we have that

F
(ˆ ε−1

ε

f ∗ ψt ∗ ψ∗t (x)
dt

t

)
=

ˆ ε−1

ε

f̂(ξ) ψ̂(tξ)ψ̂∗(tξ)
dt

t

=

ˆ |ξ|ε−1

|ξ|ε
f̂(ξ)ψ̂(sign(ξ)τ)ψ̂∗(sign(ξ)τ)

dτ

τ
.

(1.17)

In the last equality we changed variables τ = |ξ|t. Since ψ̂(0) = ψ̂∗(0) = 0 we have that

Cψ =

ˆ
R
ψ̂(τ)ψ̂∗(τ)

dτ

τ
=

ˆ
R
ψ̂(−τ)ψ̂∗(−τ)

dτ

τ
∈ (0,∞).

By dominated convergence the integral in (1.17) converges to Cψ f̂(ξ) as ε→ 0 . This concludes
the proof of (1.16).
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Outer-measure Lp are the appropriate norms for studying the embedding maps (1.15). The
embedded function F is a Borel function on R2

+ = R× R+. We recall that the outer measure µ
on R2

+ is generated by setting

µ(T (x, s)) = s with T (x, s) = {(y, t) ∈ R2
+ : |y − x| < s− t, t < s}.

On R2
+ we introduce the following family of sizes:

‖F‖Sr(T (x,s)) :=
(1

s

ˆ
T (x,s)

|F (y, t)|rdydt

t

)
.

Then the following embedding Theorem holds.

Theorem 1.11 (Carleson embedding theorem). The embedding map (1.15) satisfies the bounds

‖F‖LpS∞ . ‖f‖Lp p ∈ (1,∞]

Furthermore if
´
ψ = 0 then it also satisfies the bound

‖F‖LpS2 . ‖f‖Lp p ∈ (1,∞]

Proof. We may restrict ourselves to proving the bound for p =∞ and the weak bound for p = 1.
The full result then follows by interpolation as in Proposition 1.7 applied between classical and
outer-measure Lp spaces.
Case

´
ψ 6= 0:

To show the bound ‖F‖L∞S∞ . ‖f‖L∞ it is sufficient to show that for any tent T (x, s) we have

‖F‖S∞(T ) = sup
(y,t)∈T (x,s)

|F (y, t)| . ‖f‖L∞ .

This is trivial since

|F (y, t)| = |f ∗ ψt(y)| ≤ ‖f‖L∞‖ψt‖L1 . ‖f‖L∞ .

To show the bound ‖F‖L1,∞S∞ . ‖f‖L1 we must show that for every λ > 0 there exists a set
Eλ ⊂ R2

+ such that

µ(Eλ) .
‖f‖L1

λ
‖F1R2

+\Eλ‖S∞ . λ.

To do so let us consider the open set

{x : Mf(x) > λ} =
⋃
n∈N

Bsn(xn)

where Bsn(xn) is a (maximal) covering using disjoint open balls. Let us set

Eλ =
⋃
n∈N

T (xn, 3sn) =⇒ µ(Eλ) ≤
∑
n∈N

µ(T (xn, 3sn)) ≤
∑
n∈N

3sn .
‖f‖L1

λ
.

The estimate on the measure comes from the boundedness of the Hardy-Littlewood Maximal
function. It remains to check that

‖F1Ecλ‖S∞ . λ.
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This follows by contradiction. Suppose that for any C > 1 there exists some (y, t) /∈ Eλ such
that

|f | ∗ ψt(y) > Cλ.

Then, if C is large enough, Mf(y′) > λ for all |y′ − y| < t and thus Bt(y) ⊂ Bsn(xn) for some
n ∈ N but this contradicts that (y, t) /∈ Eλ.
Case

´
ψ = 0:

We will restrict to the case where sptψ ⊂ [−1, 1]. This is a non-essential restriction: if ψ ∈ S(R)
for an arbitrarily large N > 0 one can decompose

ψ(x) =

∞∑
n=0

2−Nnψn(
x

2n
)

where sptψn ∈ B1 are uniformly bounded Schwartz functions with
´
ψn = 0. It is sufficient to

use quasi subadditivity of outer LpS2 norms.
First let us start by showing the bounds ‖F‖L∞S2 . ‖f‖L∞ i.e. we must show that for any tent
T (x, s)

1

s

¨
T (x,s)

|f ∗ ψt(y)|2dy
dt

t
. ‖f‖2L∞

By using the Plancherel identity we have that

1

s

¨
T (x,s)

|f ∗ ψt(y)|2dy
dt

t
≤ 1

s

¨
R2
+

|f ∗ ψt(y)|2dy
dt

t
≤ 1

s

¨
R2
+

|f̂(ξ)|2|ψ̂(tξ)|2dξ
dt

t

=
1

s

ˆ
R
|f̂(ξ)|2

ˆ
R+

|ψ̂(sign(ξ)τ)|2 dτ

τ
dξ .

1

s
‖f‖2L2

where we used the change of variables τ = |ξ|t. Notice that if (y, t) ∈ T (x, s) then

f ∗ ψt(y) = f̃ ∗ ψt(y)

with f̃ = f1B3s(x) so

1

s

¨
T (x,s)

|f ∗ ψt(y)|2dy
dt

t
.

1

s
‖f1B3s(x)‖2L2 . ‖f‖L∞

as required.
Finally we proceed to show the weak L1 bounds ‖F‖L1,∞S2 . ‖f‖L1 . Recall that definition (1.6)
for each λ > 0 we need to find a set Eλ ⊂ R2

+

µ(Eλ) .
‖f‖L1

λ
‖F1R2

+\Eλ‖S2 . λ.

A Calderón-Zygmund decomposition of f at level λ allows us to write

f = g + b = g +
∑
n

bn

with ‖g‖L∞ . λ and

spt bn = Bsn(xn)

ˆ
R
bn = 0

 
Bsn (xn)

|bn| . λ
∑
n∈N

|Bsn(xn)| . ‖f‖L
1

λ
.
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Set Eλ =
⋃
n∈N T (xn, 3sn) so that the condition on the outer measure of Eλ is satisfied. Notice

that

F (y, t) = G(y, t) +B(y, t) = G(y, t) +
∑
n

Bn(y, t) = g ∗ ψt(y) +
∑
n

bn ∗ ψt(y).

By the L∞ bound above we have that

‖G‖S2(T ) . λ

By quasi subadditivity it remains to show that for any tent T (x, s) it holds that

‖B1R2
+\Eλ‖

2
S2(T (x,s)) =

1

s

¨
T (x,s)\Eλ

|b ∗ ψt(y)|2dy
dt

t

≤
¨
T (x,s)\Eλ

∣∣∣ ∑
n : sn≤t

bn ∗ ψt(y)
∣∣∣2dy

dt

t
. λ2

where the second-to-last inequality follows by the fact that sptψt ⊂ [−t, t]. We will actually
show that

‖B1R2
+\Eλ‖S∞(T (x,s)) . λ ‖B1R2

+\Eλ‖S1(T (x,s)) . λ

from which the bound for ‖ · ‖S2 follows.
As a matter of fact

t < sj , (y, t) /∈ T (xj , 3sj) =⇒ bj ∗ ψt(y) = 0.

Let βn be the primitive of bn, supported on Bsn(xn). Integrating by parts one has

|
∑

n:sn<t

bn ∗ ψt(y)| . |t−1
∑

n:sn<t

βn ∗ ψ′t(y)| . ‖t−1
∑

n:sn<t

βn‖L∞‖ψ′‖L1 . λ (1.18)

since t−1‖βn‖L∞ ≤ s−1
n ‖βn‖L∞ . λ and the supports of βn are disjoint.

Similarly for ‖ · ‖S1 we write

1

s

¨
T (x,s)\Eλ

|b ∗ ψt(y)|dydt

t
≤

∑
n:sn<t

1

s

¨
T (x,s)\Eλ

|bn ∗ ψt(y)|dydt

t

≤
∑

n:Bsn (xn)∩B3s(x)6=∅

1

s

ˆ
t>sn

ˆ
|y−xn|<2t

t−2|βn ∗ ψ′t(y)|dydt

t

.
∑

n:Bsn (xn)∩B3s(x)6=∅

1

s

ˆ
t>sn

ˆ
|y−xn|<2t

t−2‖βn‖L1‖ϕ′‖L∞dy
dt

t

.
λ

s

∑
n:Bsn (xn)∩B3s(x)6=∅

s−1
n s2

n . λ

(1.19)

This concludes the proof.

We will now use the above embedding map to obtain several well known results from classical
harmonic analysis.
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1.2.1 The Hilbert transform

Using the Calderón reproducing formula we may prove the boundedness of the Hilbert transform
on Lp(R). Recall that

Hf(x) :=
1

π
PV

ˆ
R
f(x− y)

dy

y
.

Using Calderón’s reproducing formula (1.16) with ψ∗ chosen so that ψ̂∗ = 0 on Bε(0) for some
small ε > 0 we have

Hf(·) = H
(ˆ

R2
+

f ∗ ψt(z)ψ∗t (· − z)dzdt

t

)
=

ˆ
R2
+

f ∗ ψt(z)
(
Hψ∗t

)
(· − z)dzdt

t
=

ˆ
R2
+

f ∗ ψt(z)ϕt(· − z)dz
dt

t
.

where ϕ(x) = Hψ∗(x). We used the scaling and translation invariance of the operator H. Since

0 /∈ spt ψ̂∗ i.e. ψ̂∗ is supported away from the singularity of the multiplier −i sign(ξ) of H, it
holds that ϕ ∈ S(R) and

´
ϕ = 0.

By duality the boundedness of H on Lp(R) follows by showing∣∣∣ˆ
R
Hf(x)g(x)dx

∣∣∣ =
∣∣∣ˆ

R

ˆ
R2
+

f ∗ ψt(z)ϕt(x− z)g(x)dz
dt

t
dx
∣∣∣

=
∣∣∣ˆ

R2
+

F (z, t)G(z, t)dz
dt

t

∣∣∣ . ‖f‖Lp‖g‖Lp′ (1.20)

for all functions f, g ∈ S(R), where

F (z, t) = f ∗ ψt(z) G(z, t) = g ∗ ϕ∨t (z) with ϕ∨(x) := ϕ(−x).

The embedding Theorem 1.11 allows us to conclude. As a matter of fact we have that∣∣∣ˆ
R2
+

F (z, t)G(z, t)dz
dt

t

∣∣∣ . ‖F (z, t)G(z, t)‖L1(S1) corollary 1.10

. ‖F (z, t)‖Lp(S2)‖G(z, t)‖Lp′ (S2) outer-measure Hölder 1.6

. ‖f‖Lp‖g‖Lp′ embedding Theorem 1.11.

The above procedure can be generalized to operators given by smooth Mihlin multipliers as long
as one shows that the embedding Theorem 1.11 holds for

F (z, t) =

ˆ
R
f(x)ϕz,t(x)dx

where ϕz,t is a family of wavelets indexed by (z, t) ∈ R2
+ such that tϕz,t(t · +z) is uniformly

bounded in S(R) and with that 0 /∈ spt ϕ̂z,t. Non-smooth or non translation invariant operators
are beyond the scope of this thesis.

1.2.2 Paraproducts

The simplest example of a paraproduct is a bilinear form

P(f, g)(x) =

ˆ +∞

0

f ∗ ϕt(x) g ∗ ψt(x)
dt

t
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where ϕ,ψ ∈ S(R) with
´
ψ = 0. Paraproducts are closely related to products. As a matter of

fact given two functions f, g ∈ S(R) and ϕ ∈ S(R) with
´
ϕ = 1 we have that

f(x)g(x) = lim
t→0

f ∗ ϕt(x) g ∗ ϕt(x) = −
ˆ +∞

0

∂t
(
f ∗ ϕt(x) g ∗ ϕt(x)

)
dt

= −
ˆ +∞

0

f ∗ ∂tϕt(x) g ∗ ϕt(x)dt−
ˆ +∞

0

f ∗ ϕt(x) g ∗ ∂tϕt(x)dt

=

ˆ +∞

0

f ∗ ψt(x) g ∗ ϕt(x)
dt

t
+

ˆ +∞

0

f ∗ ϕt(x) g ∗ ψt(x)
dt

t

where ψ(x) = −∂x
(
xϕ(x)

)
and so

´
ψ = 0. The second equality above holds since f ∗ϕt(x)→ 0

as t→ +∞. We used that

∂tϕt(x) = −t−2ϕ(t−1x)− t−3xϕ′(t−1x) = −1

t
ψt(x).

Thus we have obtained that

f(x)g(x) = P(f, g) + P(g, f).

By the classical Hölder inequality we have that

‖fg‖
Lp
′
3
. ‖f‖Lp1 ‖g‖Lp2 1− 1

p′3
=

1

p1
+

1

p2
p1,2 ∈ [1,∞], p′3 ∈ [1,∞].

Let us show that the paraproduct P also satisfies these Hölder-type bounds (except for the
endpoints).

We make the inessential assumption that spt ψ̂ ⊂ {ξ : 1 < |ξ| < 2} instead of simply ψ̂(0) = 0
and that spt ϕ̂ ⊂ {ξ : |ξ| < 2}. This simplifies some of the technicalities of the argument.
The trilinear for dual to P is given by

(f1, f2, f3) 7→
ˆ

R
P(f1, f2)(x)f3(x)dx =

ˆ
R

ˆ
R+

f1 ∗ ϕt(x)f2 ∗ ψt(x)
dt

t
f3(x)dx

Applying the Fourier transform and commuting the integrals we have that

ˆ
R
P(f1, f2)(x)f3(x)dx

=

ˆ
R

ˆ ∞
0

(ˆ
R
f̂1(ξ1)e2πiξ1xϕ̂(tξ1)dξ1

ˆ
R
f̂2(ξ2)e2πiξ2xψ̂(tξ2)dξ2

)dt

t
f3(x)dx

=

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ϕ̂(tξ1)ψ̂(tξ2)dξ1dξ2
dt

t

=

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ϕ̂(1)(tξ1)ψ̂(tξ2)dξ1dξ2
dt

t

+

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ψ̂(1)(tξ1)ψ̂(tξ2)dξ1dξ2
dt

t
.

where we decomposed ϕ = ϕ(1) + ψ(1) with ϕ(1), ψ(1) ∈ S(R) such that

spt ϕ̂(1) ⊂ {ξ : |ξ| < 1/2} spt ψ̂(1) ⊂ {ξ : 1/4 < |ξ| < 2}.
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Now let us introduce a ϕ(3), ψ(3) ∈ S(R) such that

ψ̂(3)(0) = 0, ψ̂(3)(ξ) = 1 on
(

spt ϕ̂(1) + spt ψ̂
)
⊂ {ξ : 1/2 < |ξ| < 4},

and

ϕ̂(3)(ξ) = 1 on
(

spt ψ̂(1) + spt ψ̂
)
⊂ {ξ : |ξ| < 4}

Using the above conditions and inverting the Fourier transform we obtain that

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ϕ̂(1)(tξ1)ψ̂(tξ2)dξ1dξ2
dt

t

=

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ϕ̂(1)(tξ1)ψ̂(tξ2)ψ̂(3)
(
−t(ξ1 + ξ2)

)
dξ1dξ2

dt

t

=

ˆ ∞
0

ˆ
R
f1 ∗ ϕ(1)

t (x)f2 ∗ ψt(x)f3 ∗ ψ(3)
t (x)dx

dt

t

and
ˆ ∞

0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ψ̂(1)(tξ1)ψ̂(tξ2)dξ1dξ2
dt

t

=

ˆ ∞
0

ˆ
R2

f̂1(ξ1)f̂2(ξ2)f̂3(−ξ1 − ξ2)ψ̂(1)(tξ1)ψ̂(tξ2)ϕ̂(3)
(
−t(ξ1 + ξ2)

)
dξ1dξ2

dt

t

=

ˆ ∞
0

ˆ
R
f1 ∗ ψ(1)

t (x)f2 ∗ ψt(x)f3 ∗ ϕ(3)
t (x)dx

dt

t

For the first term we use corollary 1.10 and the outer-measure Hölder inequality to obtain∣∣∣∣ˆ ∞
0

ˆ
R
f1 ∗ ϕ(1)

t (x)f2 ∗ ψt(x)f3 ∗ ψ(3)
t (x)dx

dt

t

∣∣∣∣
. ‖f1 ∗ ϕ(1)

t (x)f2 ∗ ψt(x)f3 ∗ ψ(3)
t (x)‖L1S1

. ‖f1 ∗ ϕ(1)
t (x)‖Lp1S∞‖f2 ∗ ψt(x)‖Lp2S2‖f3 ∗ ψ(3)

t (x)‖Lp3S2

. ‖f1‖Lp1 ‖f2‖Lp2‖f3‖Lp3 .

The last inequality follows from the embedding Theorem 1.11. The crucial observation is that
of the three term in the integral, at least two appear convolved with a mean-zero functions ψ.
The second term can be dealt with in the same way.
This approach can also be expanded to include more general paraproducts given by multipliers,
but this is beyond the scope of this presentation

1.2.3 Sparse operators and Carleson measures

The classical notion of a Carleson measure σ on R2
+ is a Borel measure that satisfies the following

bound

σ(T (x, s)) ≤ Cs ∀(x, s) ∈ R2
+.

If σ = ρ(x, t)dxdt
t is given by a non-negative density then the above condition becomes

1

s

ˆ
T (x,s)

ρ(x, t)dx
dt

t
≤ C
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i.e. σ is a Carleson measure if

‖ρ‖L∞S1 < C for some C > 0. (1.21)

Given a Carleson measure let us consider the form

(f1, f2) 7→
ˆ

R2
+

( 
Bt(x)

|f1|
)( 

Bt(x)

|f2|
)

dσ(x, t).

This is a positive form so we may assume that f1 and f2 are non-negative and it follows thatffl
Bt(x)

|f | . F (x, t) = f ∗ ϕt(x) for some non-negative ϕ ∈ S(R). Using the embedding 1.11 it

follows that the above form satisfies the boundsˆ
R2
+

( 
Bt(x)

|f1|
)( 

Bt(x)

|f2|
)

dσ(x, t) ≤ ‖F1‖LpS∞‖F2‖Lp′S∞‖ρ‖L∞S1

for all p, p′ ∈ (1,∞) with 1
p + 1

p′ = 1.
Sparse forms are closely related to Carleson’s measures. A discreet n-linear sparse form with
exponents s1, · · · , sn ∈ (1,∞] is given by

(f1, · · · , fn) 7→
∑
I∈S

|I|
n∏
i=1

( 
I

|f1|si
)1/si

(1.22)

where S is a collection of intervals such that∑
J∈S
J⊂I

|J | ≤ C|I|. (1.23)

In a continuous setting we consider for which p1, · · · , pn ∈ (1,∞] does the bound∣∣∣∣ˆ
R2
+

n∏
i=1

( 
Bt(x)

|f1|si
)1/si

ρ(x, t) dx
dt

t

∣∣∣∣ . n∏
i=1

‖fi‖Lpi (1.24)

with some ρ satisfying (1.21) hold. The relation between (1.22) and (1.24) is given by the fact
that the former can be rewritten as

(f1, · · · , fn) 7→
ˆ

R2
+

n∏
i=1

( 
Bt(x)

|f1|si
)1/si

dσ(x, t)

where σ(x, t) =
∑
I∈S 2t δ(x− xI) δ(t− |I|/2) and condition (1.23) implies that σ is a Carleson

measure. Bounds (1.24) imply the bounds for (1.22) by a straightforward mollification procedure.
The bound (1.24) follows by noticing that∣∣∣∣ˆ

R2
+

n∏
i=1

( 
Bt(x)

|f1|si
)1/si

ρ(x, t) dx
dt

t

∣∣∣∣ =

¨
R2
+

n∏
i=1

Fi(x, t)ρ(x, t) dx
dt

t

. ‖
n∏
i=1

Fi(x, t)ρ(x, t)‖L1S1 . ‖ρ‖L∞S1

n∏
i=1

‖Fi‖LpiS∞ .
n∏
i=1

‖fi‖Lpi .

We have used the property 1.10 and the outer-measure Hölder inequality 1.6 that holds as long
as
∑n
i=1

1
pi

= 1. The last inequality follows from the boundedness of the embedding map

Fi(x, t) =
( 
Bt(x)

|f1|si
)1/si
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that hold as long as pi > si. This follows from Theorem 1.11 by noticing that

Fi(x, t)
si . |fi|si ∗ ψt(x)

for some non-negative bump function ψ ∈ S(R) and that

‖Fi‖LpiS∞ . ‖F sii ‖
1/si
Lpi/siS∞

. ‖|fi|si‖1/siLpi/si
. ‖fi‖Lpi .

1.3 Time frequency analysis and the Walsh-Fourier model

1.3.1 The Walsh group

We now introduce the Walsh group that is a discrete analog of R. The advantage of this analog is
that many problems in Real Harmonic Analysis have a corresponding formulation for the Walsh
group that maintains the major characteristics of the original problem while simplifying some of
the more technical details. We describe the Walsh group in somewhat greater generality than
strictly necessary in this application.

We begin by fixing a prime p, for our applications one may set p = 2. For every x ∈ R+ consider
its digit expansion (xn)n∈Z in base p with xn ∈ {0, . . . , p− 1} and x =

∑
n∈Z xnp

n and instead
of classical addition consider the operation ⊕ that is digit-wise addition without carry. Formally
the Walsh group with base p is obtained by setting

|x| = max
{
pn : xn 6= 0

}
for x ∈

∏
n∈Z

Zp

Wp :=
{
x ∈ Πn∈ZZp : |x| <∞

}
.

(1.25)

with ⊕ induced by the sum on Zp i.e.

(x⊕ y)n = (xn + yn)/Zp =

{
xn + yn if xn + yn ≤ p− 1

xn + yn − p if xn + yn ≥ p.
(1.26)

Both the 0 element and the inverse −x are well defined. The map (x, y) 7→ |x − y| defines a
translation invariant distance with respect to which Wp is complete. The topology is generated
by p-adic intervals that are balls in the Walsh metric Bpn(x) = {y : |x − y| < pn} with x ∈ Wp

and n ∈ Z.

Intuitively, by defining ⊕ this way, we are postulating that different orders of magnitude, repre-
sented by different digits, behave independently. Following the same intuition, multiplication on
Wp is given by the Cauchy product

(
x� y

)
n

=
( ∑
k+l=n

xkyl

)
/Zp

that is well defined since |x|, |y| < ∞ and the norm x 7→ |x| is multiplicative i.e. |xy| = |x||y|.
By a slight abuse of notation for any n ∈ Z set pn ∈Wp be given by

(pn)k =

{
1 k = n

0 k 6= n
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The multiplicative unit is then given by p0 = 1 and any non-zero number x ∈Wp has an inverse.
Given |y| < 1 it holds that

(1 + y)−1 =

∞∑
k=0

(−1)k y � · · · � y︸ ︷︷ ︸
k times

=

∞∑
k=0

(−1)k � y�k

while if a ∈ {0, . . . , p− 1} the inverse a−1 in Zp exists since p is prime. Since for any x ∈ Wp it

holds that x = pn � (xn)�
(

1 + p−n � (xn)−1x
)

with pn = |x| we can compute x−1 as

x−1 = p−n(xn)−1
∞∑
k=0

(−1)k �
(

1 + p−n � (xn)−1x
)�k

.

From now on we will silently omit the � notation and write xy instead of x� y for x, y ∈Wp.
We will be using a crucial geometric remark about Walsh intervals: given two intervals I, I ′ ⊂Wp

it holds that
I ∩ I ′ 6= ∅ =⇒ I ⊆ I ′ or I ′ ⊆ I.

Given a p-adic interval I = B|I|(x) ⊂ Wp we say I ′ is a p-adic sibling of I if I ′ ⊂ Bp|I|(x) =
Bp|I′|(x). Given an interval I we denote by pI its p-adic parent i.e. if I = B|I|(x) then pI =
Bp|I|(x).
Let us introduce a translation invariant (Haar) measure | · | on Wp by setting |B1(0)| = 1 so that

|Bpn(x)| = pn

while the measure of other Borel sets can be determined via a covering argument. Notice that
the map

x 7→ i(x) =
∑
n∈Z

xnp
n. (1.27)

from Wp to R+ is continuous, surjective, and injective when restricted to the complement of the
Walsh numbers of the form

{x : xn = p− 1 ∀n < −N for some N ∈ Z}.

This last set is countable so it has vanishing measure, and furthermore the above map i is
measure-preserving. In terms of function spaces f 7→ f ◦ i is thus an isometry between Lp(R+)
and Lp(Wp).
Given two intervals I, I ′ we say that I is lower than I ′ (I ′ higher than I respectively ) if all the
points of the real interval i(I) are smaller than all the points of i(I ′).
To introduce the Walsh-Fourier transform we introduce the shorthand

exp(x) = e
2πi
p x−1 .

Given an integrable function f on Wp its Walsh-Fourier transform is defined by

f̂(ξ) :=

ˆ
Wp

f(x) exp(−ξx)dx

where the integration is taken with respect to the measure we introduced on Wp. In terms of

Fourier analysis on locally compact Abelian groups the dual group Ŵp of Wp can be identified
with Wp itself via

x 7→ exp(ξx) for some ξ ∈Wp.

Figure 1.2 illustrates the graphs of the characters of the group W2. The numbers are represented
in binary expansion



1.3. Time frequency analysis and the Walsh-Fourier model 19

ξ = 0.0

10.0

ξ = 0.1

10.0

ξ = 1.11

10.0

ξ = 1.0

10.0

Figure 1.2: Some characters of the group W2: graphs of the functions x 7→ exp(ξx).

Proposition 1.12. The Hausdorff-Young inequality

‖f̂‖Lp′ (Wp) . ‖f‖Lp(Wp) p ∈ [1, 2]

and the Plancherel identity

ˆ
Wp

f̂(ξ)ĝ(ξ)dξ =

ˆ
Wp

f(x)g(x)dx ∀f, g ∈ L2(Wp) (1.28)

hold.

Considering the translation, modulation, and dilation symmetries applied to an integrable func-
tion f we have the following identities that can be checked by direct computation

̂f(· − y) = exp(−y·)f̂(·)
̂exp(η·)f(·) = f̂(· − η)

̂f(p−n·) = pnf̂(pn·).

(1.29)

Given y, η ∈Wp and n ∈ Z let us consider the function

exp(η·)p−n1Bpn (y)(·).

Notice that given y′ ∈ Bpn(y) and η′ ∈ Bp−n(η) it holds that

exp(η′·)p−n1Bpn (y′)(·) = exp((η′ − η)y) exp(η·)p−n1Bpn (y)(·) (1.30)
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Figure 1.3: Walsh wave packets in the time-frequency plane.

i.e. the two functions differ by a factor exp((η′ − η)y) of norm 1 since for x ∈ Bpn(y) it holds
that exp(ηx) = exp(ηy).
This motivates us to introduce the following notation. Let P be the set of all p-adic rectangles
of area 1 or a “tiles” i.e.

P =

{
P = IP × ωP : IP = Bpn(y), ωP = Bp−n(η) for some y, η ∈Wp and n ∈ Z

}
(1.31)

where Ip and ωP are the time and frequency projections of the tile. Notice that |IP ||ωP | = 1.
Given a tile P we associate to it the wave packet

wP (x) = |IP |−1 exp(ηPx)1IP (x) (1.32)

as in Figure 1.3.1. To avoid ambiguity we set ηP to be the “lower” point of ωP i.e. ηP ∈ ωP
such that (ηP )m = 0 for all m ∈ Z such that pm < |ωP |.
The tiles encode the support of the wave packet and of its Walsh-Fourier transform.

Proposition 1.13. Given a tile P ∈ P and an associated wave packet wP it holds that

sptwP = IP spt ŵP = ωP .

Furthermore two wave packets wP and wP ′ are orthogonal if and only if P ∩ P ′ = ∅, otherwiseˆ
Wp

wP (x)wP ′(x)dx = max
(
|IP |, |IP ′ |

)−1
.
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Finally, any subset ⋃
n

Pn = A ⊂Wp ×Wp

where Pn are a finite collection of pairwise disjoint tiles identifies a finite-dimensional subspace
of L2(Wp) given by {∑

n

anwPn : an ∈ C
}
.

This subspace depends only on A and not on the given representation of A as a union of tiles
(tiling).

The proof of the above statements depends on the fact that

1̂B1(0)(ξ) =

ˆ
B1(0)

exp(−ξx)dx = 1B1(0)(ξ). (1.33)

Proof. If |ξ| < 1 and |x| < 1 then exp(ξx) = 1 so

ˆ
B1(0)

exp(−ξx)dx =

ˆ
B1(0)

dx = 1.

On the other hand suppose |ξ| = pm ≥ 1 so that we can represent B1(0) as a union
⋃pm
i=1Bp−m(xi)

of pairwise disjoint p-adic intervals and ξ = ξmp
m + ξ< with |ξ<| < pm. Thus using a change of

variables and that exp(−p−mξ<mx′) = 1 for x′ ∈ B1(0) we obtain that

ˆ
B1(0)

exp(−ξx)dx =

pm∑
i=1

exp(−ξxi)
ˆ
Bp−m (0)

exp(−ξmpmx) exp(−ξ<x)dx

=

pm∑
i=1

exp(−ξxi)p−m
ˆ
B1(0)

exp(−ξmx′)dx′ = 0

The last inequality follows from the fact that

ˆ
B1(0)

exp(−ξmx′)dx′ =

p−1∑
q=0

ˆ
Bp−1 (p−1q)

exp(−ξmx′)dx =

p−1∑
q=0

p−1e−
2πiqξm

p = 0.

As a consequence, using (1.29) it follows that

ŵIP×ωP (ξ) = wωP×IP (ξ). (1.34)

If P and P ′ are disjoint either IP ∩ IP ′ = ∅ or ωP ∩ ωP ′ = ∅ so
ˆ
Wp

wP (x)wP ′(x)dx =

ˆ
Wp

ŵP (ξ)ŵP ′(ξ)dξ = 0.

If P and P ′ are not disjoint, we may, by applying a modulation and a translation to both
functions assume that ωP , ωP ′ , IP , IP ′ 3 0 so

ˆ
Wp

wP (x)wP ′(x)dx = |IP |−1|IP ′ |−1

ˆ
IP∩IP ′

dx = max
(
|IP |, |IP ′ |

)−1
.
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The last part of Proposition 1.13 can first be proven in the special case

A = B1(0)×Bp(0) =

p−1⋃
q=0

Bp−1(p−1q)×Bp(0) =

p−1⋃
q=0

B1(0)×B1(q).

by counting dimensions. In fact the p wave packets in each representation are orthogonal and
thus a basis, and the p× p matrix

(q, q′)→
ˆ
wBp−1 (p−1q)×Bp(0)(x)wB1(0)×B1(q′)(x)dx = p−1e

2πiqq′
p

is non-degenerate. One concludes the proof of 1.13 by an induction argument that we omit.

1.3.2 The Carleson operator

Let us now get back to the Carleson operator (0.1). Its linearized version is given by

Ccf(z) =

ˆ ∞
c(z)

f̂(ξ)e2πiξxdξ (1.35)

for some fixed Borel measurable stopping function c : R → R. To bound the above opera-
tor on Lp(R) we first need to obtain the wave-packet representation (0.3). We expect such a
decomposition to be available since the family of operators (1.35) is essentially defined by its
symmetries: apart from scaling and translation invariance typical of Calderón-Zygmund opera-
tors, the supremum in (0.1) accounts for modulation invariance i.e. if f̃(x) = e2πiηxf(x) then

Cf = Cf̃ .

Identity (0.3) follows by duality from the equality

Ccf(z) =

ˆ
R2
+

f ∗ ψη,t ∗ ψη,t(z)χ
(
t(η − c(z))

)
dηdt (1.36)

where

ψη,t(z) := t−1e2πiηz ψ
(z
t

)
(1.37)

with ψ ∈ S(R) a suitably normalized, non-negative, even, generating wavelet with Fourier trans-

form ψ̂ supported in a small ball Bb. The function χ is a non-negative cutoff that satisfies

χ ∈ C∞c
(
Bε(d)

)
Bε(d) ⊂ (b, +∞)

ˆ
χ = 1 (1.38)

and the truncated wave packet in (0.6) is given by

ψcη,t(z) = ψη,t(z)χ(t(η − c)). (1.39)

Proof of (1.36) . We now show that the above identity holds for f ∈ S(R) and for any bounded
Borel function c. For every point z ∈ R we introduce a modulated Littlewood-Paley frame
centered at the frequency c(z) ∈ R (compare to (1.20)). As a matter of fact freezing c = c(z) in
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(1.36) and applying the Fourier transform gives

F

(ˆ
R×R+

f ∗ ψη,t ∗ ψη,t(z)χ
(
t(η − c)

)
dηdt

)

=

ˆ
R×R+

f̂(ξ) ψ̂(t(ξ − η))2 tχ(t(η − c))dηdt

t

=

ˆ
Bε(d)×R+

f̂(ξ) ψ̂
(
t(ξ − c)− η′

)2
χ(η′)dη′

dt

t

= f̂(ξ)

ˆ
Bε(d)

1[c,+∞)(ξ)Cψ,η′χ(η′)dη′ = f̂(ξ)1[c,∞)(ξ)

where Cψ,η′ =
´

R+ ψ̂(t − η′)2 dt
t . The last identity holds up to renormalizing ψ. Clearly, notice

that if η′ ∈ Bε(d) and ξ−c < 0 then t(ξ−c)−η′ < −b for all t ∈ R+ and thus ψ̂
(
t(ξ−c)−η′

)2
= 0.

On the other hand if ξ − c > 0 one may change variables t′ = t(ξ − c) to obtain

ˆ
R+

ψ̂
(
t(ξ − c)− η′

)2 dt

t
=

ˆ
R+

ψ̂
(
t′ − η′

)2 dt′

t′
= Cψ,η′

The constant is positive and finite since t′ 7→ ψ̂(t′ − η′) is real-valued and supported away from
0. It can be checked that the integral in (1.36) converges uniformly.

We claim that the W2 Walsh analog with of the wave packet representation (0.3) is given by∑
P∈P

〈f ; wP 〉〈a(·); 1ωPd
(
c(·)
)
wP (·)〉|IP | =

∑
P∈P

F(P )A(P )|IP | (1.40)

where ωPd is the lower dyadic sibling of ωP i.e. if ω′ is the dyadic sibling of ωP then ωPd = ω′ if
ω′ is below ωP and ωPd = ∅ otherwise.
The integral in (0.3) is taken over R3

+ that parametrizes all rectangles Ip × ωP of R2 with area 1
via the map

(y, η, t) 7→ Bt(y)×Bt−1(η).

The term |IP | in (1.40) is simply a normalization term associated to the discretization of the
measure of R3

+ when passing to dyadic tiles.
A real wave packet

ϕη,t(· − z) = eiη(x−z)t−1ϕ
( · − z

t

)
is adapted to such a tile in the sense that ϕη,t(· − z) is essentially supported on Bt(y) whereas

̂ϕη,t(· − z) is essentially supported on Bt−1(η). By this we mean that for arbitrary N > 0 the
bounds

|ϕη,t(· − y)| . CN t
−1
(

1 +
| · −y|
t

)−N
| ̂ϕη,t(· − y)(ξ)| . CN t

(
1 + t| · −η|

)−N
hold. The Walsh analog for ϕ is given by 1B1(0) so that ϕη,t(·−y) and wP (·) have corresponding
time-frequency localization for t = |IP |, y = xP , and η = ηP and thus the Walsh embedding

F(P ) = 〈f ; wP 〉 =

ˆ
Wp

f(x)wP (x)dx (1.41)
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corresponds to (0.5). On the other hand the truncated wave packet (1.39) either essentially
coincides with ψη,t if

Bt−1(η) ⊂ (c,+∞] dist(c;Bt−1(η)) ≈ t−1

or vanishes if the above conditions do not hold. It follows that

A(P ) = 〈a(·); 1ωPd
(
c(·)
)
wP (·)〉 (1.42)

is the appropriate Walsh analog for the embedding (0.6). Given the definition of ωPd we can
restrict P to consist only of the tiles P that are the higher frequency children of their parent i.e.
ωPd 6= ∅.

1.3.3 Boundedness of the Walsh Carleson operator in local L2

Using the theory introduced in Section 1.1 we will now prove that the bounds∣∣∣∑
P∈P

F(P )A(P )|IP |
∣∣∣ . ‖f‖Lp‖a‖Lp′ p ∈ (2,∞) (1.43)

hold.
We begin by defining the family of generating sets T that we call trees. For every tile PT =
IT × ωT ⊂ P set

T (PT ) := T (d)(TP ) ∪ T (u)(TP ) :={
P ∈ P : IP ⊆ IT , ωT ⊆ ωP

}
∪
{
P ∈ P : IP ⊆ IT , ωT ⊆ ωPd

} (1.44)

where ωPd is the lower dyadic sibling of ωP as defined previously. Let us define a pre-measure
by setting

µ(T ) = |IT |. (1.45)

and let the outer measure be generated by µ as described in (1.1). Consider the two generating
sizes

‖F‖Se(T ) := ‖F‖S2,u(T ) + ‖F‖S∞(T )

:=

(
1

|IT |
∑

P∈T (u)

|F(P )|2|IP |
)1/2

+ sup
P∈T
|F(P )|

(1.46)

‖A‖Sm(T ) := ‖A‖S2,u(T ) + ‖A‖S1,d(T )

:=

(
1

|IT |
∑

P∈T (u)

|A(P )|2|IP |
)1/2

+
1

|IT |
∑

P∈T (d)

|A(P )||IP |.
(1.47)

that are Hölder dual with respect to the size S1 generated by

‖G‖S1(T ) :=
1

|IT |
∑
P∈T
|G(P )||IP | (1.48)

in the sense that
‖FA‖S1 . ‖F‖Se‖A‖Sm ∀ F,A Borel functions. (1.49)

Using the outer integral domination property 1.10 outer-measure Hölder inequality 1.6 it follows
that ∣∣∣∑

P∈P

F(P )A(P )|IP |
∣∣∣ . ‖FA‖S1 . ‖F‖LpSe‖A‖Lp′Sm p ∈ [1,∞] (1.50)
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To show (1.43) it is thus sufficient to show the embedding bounds

‖F‖LpSe . ‖f‖Lp p ∈ (2,∞] (1.51)

‖A‖Lp′Sm . ‖a‖Lp′ p′ ∈ (1,∞] (1.52)

1.3.4 Proof of bounds for F

We show that (1.51) holds with p =∞ and that the weak bound

‖F‖L2,∞Se . ‖f‖L2 (1.53)

holds. The statement then follows by outer-measure interpolation as in Proposition 1.7.
For p =∞ we show that for any tree T the bound

‖F‖Se(T ) = ‖F‖S2,u(T ) + ‖F‖S∞(T ) . ‖f‖L∞

holds. Since ‖wP ‖L1 = 1 it follows that

‖F‖S∞(T ) = sup
P∈T

ˆ
W2

f wP ≤ ‖f‖L∞ .

It remains to show that

‖F‖2S2,u(T ) =
1

|IT |
∑

P∈T (u)

|F(P )|2|IP | . ‖f‖L2 .

Notice that the tiles P ∈ T (u) are pairwise disjoint. Given two distinct tile P, P ′ ∈ T (u) it holds
that ωT ⊆ ωPd ∩ ωP ′d 6= ∅ so let us suppose that ωPd ⊆ ωP ′d . If ωPd = ωP ′d and IP ∩ IP ′ 6= ∅ then

IP = IP ′ since |IP | = |ωPd |−1 = |ωP ′d |
−1 = |IP ′ | and thus P, P ′ would coincide. On the other

hand, if ωPd ( ωP ′d then ωP ∩ωP ′ = ∅. Thus |IP |1/2wp are orthonormal for P ∈ T (u) and are all
supported on IT so by Bessel’s inequality∑

P∈T (u)

F(P )2|IP | =
∑

P∈T (u)

〈f ; wP 〉2|IP | ≤ ‖f 1IT ‖2L2 . |IT |‖f‖2L∞

as required.
Proving the bounds (1.53) requires showing that for any λ > 0 there exists a set Eλ ⊂ P such
that

‖F1Ecλ‖Se(T ) . λ ∀T ∈ T, µ(Eλ) ≤
‖f‖2L2

λ2
(1.54)

It is enough to show that the above holds for S∞ and S2,u in lieu of Se respectively.
Let us first work with S2,u; we construct Eλ via an algorithmic covering argument. At every
step j ≥ 1, among the T such that

1

|IT |
∑

P∈T (u)\
⋃j−1
k=1 Tk

|F(P )|2|IP | ≥ λ2 (1.55)

consider those trees T with minimal ωT with respect to inclusion. This is possible since for any
tree it holds that

|IT | ≤ λ−2
∑

P∈T (u)

|F(P )|2|IP |
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and thus |ωT | is bounded from below. Consider the tree Tj to be the one with the higher-most
ωT among this sub-collection .
We claim that

P ∈ (T
(u)
j \

j−1⋃
k=1

Tk), P ′ ∈ (T
(u)
j′ \

j′−1⋃
k=1

Tk) =⇒ P ∩ P ′ = ∅ (1.56)

for any j ≤ j′. If j = j′ then P, P ′ ∈ T (u)
j and we reduce to the single tree case that we have

shown previously. For j < j′ let us reason by contradiction and suppose that ωP ∩ ωP ′ 6= ∅ and
IP ∩ IP ′ 6= ∅. If ωP = ωP ′ then it follows that P = P ′ and this contradicts the assumptions

of (1.56) since P ′ = P ∈ T
(u)
j ⊂

⋃j′−1
k=1 Tk. Suppose that ωP ( ωP ′ then ωTj ⊂ ωPd ⊂ ωP ′

and IP ′ ⊂ IP ⊂ ITj and thus P ′ ∈ T
(u)
j once again contradicting the assumptions of (1.56).

Finally suppose ωP ′ ( ωP then ωTj′ ⊂ ωP ′d ⊂ ωP while ωT ⊂ ωPd so ωTj′ is higher than ωTj that
contradicts the selection order.
Disjointness property (1.56) gives that, at any step N , one has

‖f‖2L2 ≥
N∑
j=0

∑
P∈T (u)

j \
⋃j−1
k=1 Tk

〈f ; wP 〉2|IP |

=

N∑
j=1

∑
P∈T (u)

j \
⋃j−1
k=1 Tk

|F(P )|2|IP | ≥
N∑
j=1

λ2|ITj |.

We used Bessel’s inequality since disjointness implies orthogonality according to Proposition
1.13. It follows that

µ
( N⋃
j=1

Tj
)
≤

N∑
j=1

|ITj | ≤
‖f‖2L2

λ2

and thus Eλ =
⋃∞
j=1 Tj also satisfies µ(Eλ) ≤ ‖f‖

2
L2

λ2 . Conditions (1.54) with S2,(u) in lieu of Se

are satisfied: in fact any tree T where the first condition fails would be selected by the above
algorithm in finitely many steps.
To show that (1.54) holds with S∞ in lieu of Se one may follow a similar algorithm using

|F(PT )|1P\
⋃j
k=1 Tk

(PT )

|IT |
≥ λ

as the selection condition instead of (1.55). We omit the details that are essentially the same.

1.3.5 Proof of bounds for A

We show that bounds (1.52) hold by interpolating between p′ = ∞ and the weak Lp
′

bounds
that hold for p′ = 1.
Let us associate to every tile P ∈ P the auxiliary embedding

M(P ) =
1

|IP |

ˆ
IP

|a(x)|1ωP (c(x))dx (1.57)

and we show that the bounds

‖M‖Lp′S∞ . ‖a‖Lp′ p′ ∈ (1,∞)

‖M‖L1,∞S∞ . ‖a‖L1

(1.58)
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hold with ‖M‖S∞ = supP∈P |M(P )|. We then conclude using the following size domination lemma

Lemma 1.14. Suppose E =
⋃
n Tn is a union of tree such that

‖M(P )1P\E‖S∞ < λ

then
‖A1P\E‖Sm . λ.

Proof of (1.58). We show (1.58) by interpolating between the two endpoint estimates. For p′ =
∞ the estimates is trivial since

M(P ) =
1

|IP |

ˆ
IP

|a(x)|1ωP (c(x))dx ≤ ‖a‖L∞ .

We now show the weak L1S∞ bounds: for any λ > 0 we find a set Eλ such that

‖M1P\Eλ‖S∞ . λ µ(Eλ) ≤ λ−1‖a‖L1 (1.59)

We proceed algorithmically. At every step j consider let Pj be a tile with minimal ωP with
respect to inclusion among tiles satisfying

P ∈ P \
j−1⋃
k=1

T (P ) |M(P )| ≥ λ. (1.60)

This is always possible since for any such P it holds that |IP | < λ−1‖a‖L1 .
We claim that

Pj ∩ Pj′ = ∅ for any j < j′. (1.61)

Let us reason by contradiction and suppose that ωPj ∩ωPj′ 6= ∅ and IPj ∩IPj′ 6= ∅. By minimality
with respect to inclusion ωPj ⊂ ωPj′ but then Pj′ ∈ T (Pj) contradicting (1.60).
Using (1.61), at any step N , we obtain the bound

µ
( N⋃
j=1

T (Pj)
)
≤

N∑
j=1

|IPJ | =
N∑
j=1

|IP |
M(Pj)

λ

≤ λ−1

ˆ
W2

|a(x)|
N∑
j=1

1IPj (x)1ωP
(
c(x)

)
dx ≤ ‖a‖L

1

λ
.

Setting Eλ =
⋃∞
j=1 T (Pj) we obtain (1.59). In fact any P that violates would be selected after

finitely many steps.

Proof of size domination Lemma 1.14. Given E =
⋃
n Tn such that ‖M1P\E‖S∞ ≤ λ we show

that for any tree T the bounds

‖A1P\E‖S1,(d)(T ) . λ (1.62)

‖A1P\E‖S2,(u)(T ) . λ (1.63)

hold.
Let us begin with (1.62) by showing that for any N > 0 the following bound holds∑

∆T (d)

|A(P )||IP | . λ|IT | where ∆T (d) = (T (d) \ E) ∩ {P : |IP | > 2−N}.
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Let J be the partition of IT generated by IP with P ∈ ∆T (d) i.e. setting

I = {I ⊂ IT : IP 6⊆ I ∀P ∈ ∆T (d)}

J ∈ J if and only if J ∈ I and 2J /∈ I.
Then ∑

∆T (d)

|A(P )||IP | ≤
∑
J∈J

ˆ
J

|a(x)|
∑

P∈∆T (d)

1IP (x)1ωPd
(
c(x)

)
dx

≤
∑
J∈J
|J |

 
J

|a(x)|1ωJ
(
c(x)

)
dx

where ωJ is the unique dyadic interval such that ωT ⊂ ωJ and |ωJ | = |J |−1. This holds since if
x ∈ J ∩ IP for some P ∈ ∆T (d) then J ( IP and thus ωPd ⊂ 2ωP ⊆ ωJ . It is sufficient to show
that  

J

|a(x)|1ωJ
(
c(x)

)
≤ 4λ. (1.64)

Reasoning by contradiction let ω+
J and ω−J be the two (upper and lower) dyadic children of ωJ

i.e. 2ω+
J = 2ω−J = ωJ and set Q+ = 2J × ω+

J and Q− = 2J × ω−J so that at

M(Q+) ≥ λ or M(Q−) ≥ λ

and thus Q+ ∈ E or Q− ∈ E. By maximality of J there exists P ∈ ∆T (d) such that IP ⊆ 2J
but then P ∈ E since either ω+

J ⊂ ωP or ω−J ⊂ ωPd and E is a union of trees. This concludes
the proof for S1,(d).
We show (1.63) by proving for any tree T and any N > 0 the dual bounds∑

P∈∆T (u)

A(P )H(P )|IP | . λ|IT | where ∆T (u) = (T (u) \ E) ∩ {P : |IP | > 2−N}. (1.65)

for any function H with ∑
P∈∆T (u)

|H(P )|2|IP | ≤ |IT |.

Let once again J be the partition generated by P ∈ ∆T (u).
We can rewrite the sum in (1.65) as∑

P∈∆T (u)

A(P )H(P )|IP | =
ˆ
IT

a(x)
∑

P∈∆T (u)

1ωPd
(
c(x)

)
H(P )wP (x)|IP | dx

=
∑
J∈J

ˆ
J

a(x)1J(x)1ωJ (x)
∑

P∈∆T (u)

1ωPd
(
c(x)

)
H(P )wP (x)|IP | dx.

The second equality holds by maximality of J since if x ∈ J ( IP then ωJ ⊃ ωPd . Let

h(x) =
∑

P∈∆T (u)

H(P )wP (x)|IP |

and since tiles in ∆T (u) are pairwise disjoint and thus wP are orthogonal we have that

‖h‖2L2 =
∑

P∈∆T (u)

|H(P )|2|IP | ≤ |IT |.
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For any given x ∈ ITo set

l−(x) = min{|IP | with P ∈ ∆T (u), c(x) ∈ ωPd}
l+(x) = max{|IP | with P ∈ ∆T (u), c(x) ∈ ωPd}

and let P−(x) be a tile such that |IP−(x)| = l−(x)
2 and ωT ⊂ ωP−(x) and let P+(x) be such that

|IP+
(x)| = l+(x) and ωT ⊂ ωP+(x). Notice that for every point x ∈ IT it holds that

∑
P∈∆T (u)

1ωPd
(
c(x)

)
H(P )wP (x)|IP | =

(ˆ
h(y)wP−(x)(y)dy

)
wP−(x)(x)|IP−(x)|

−
(ˆ

h(y)wP+(x)(y)dy
)
wP+(x)(x)|IP+(x)|

and thus ∣∣∣ ∑
P∈∆T (u)

1ωPd
(
c(x)

)
H(P )wP (x)|IP |

∣∣∣ . sup
l>l−(x)

 
Bl(x)

|h(y)|dy.

Using the fact that l−(x) > |J | for any x ∈ J ∈ J the right We have that for x ∈ J

sup
l>l−(x)

 
Bl(x)

|h(y)|dy ≤ sup
I⊃J

 
I

|h(y)|dy

where the right hand side is constant for x ∈ J and is dominated by the dyadic Hardy-Littlewood
maximal function

Mh(x) = sup
I⊃x

 
|h(x)|dx.

Thus ∣∣∣ˆ
J

a(x)1J(x)1ωJ (x)
∑

P∈∆T (u)

1ωPd
(
c(x)

)
H(P )wP (x)|IP | dx

∣∣∣
.
 
J

a(x)1J(x)1ωJ (x)dx

ˆ
J

Mh(x)dx.

and it can be shown as in the case (1.64) that

 
J

a(x)1J(x)1ωJ (x)dx ≤ 4λ.

Using the L2 bound on the dyadic Hardy-Littlewood maximal function we conclude that∣∣∣ ∑
P∈∆T (u)

A(P )H(P )|IP |
∣∣∣. λ

ˆ
IT

Mh(x)dx . λ|IT |

as required.

1.4 Iterated outer measure spaces

In the previous section we have shown that the Walsh analog of the Carleson operator (0.1) is
bounded on Lp(R) for p ∈ (2,∞) by reducing to the bounds (1.51) and (1.52) on two embedding
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maps. However the bounds (1.51) do not hold for p ∈ (1, 2) and this is the main obstruction for
proving bounds for the Carleson operator on the full range p ∈ (1,∞).
The failure of (1.51) for p < 2 follows from a rescaling argument. Consider the function f = 1B1(0)

and consider the quantity µ
(
‖F‖Se > 2−k

)
for k > 0 large enough. Notice that

F(P ) ≥ 2−k ∀P = B2k(0)×B2−k(ξ) with B2−k(ξ) ⊂ B1(0)

thus if ‖F1X\E‖Se < 2−k then E has to contain all the above tiles. Any given tree T ∈ T can

contain at most two such tiles and each such tree has to have |IT | ≥ 2k. Since there are 2k tiles
as above it follows that

µ
(
‖F‖Se > 2−k

)
≥ 22k−1

so clearly even weak bounds fail for p < 2.
Intuitively, the problem is that the measure µ does not distinguish space and frequency local-
ization: in the above example the “optimal” covering set ‖F1X\E‖Se < 2−k consists of trees at
different top frequencies ξT but with the same spatial interval IT = B2k(0).
We address this deficiency by introducing iterated outer measure spaces. Consider a new family
of generating sets D called strips given by

D(ID) =
{
P ∈ P : IP ⊂ ID

}
and let us generate an outer measure ν via the pre-measure

ν(D) = |ID|.

As sizes we use localized versions of outer-measure Lp norms calculated with respect to the outer
measure µ. For every q ∈ (0,∞] and for every strip D ∈ D introduce the size

‖F‖-Lq(D)S = |ID|−1/q ‖F1D‖LqS ‖F‖-LqS = sup
D∈D
‖F‖-Lq(D)S (1.66)

It is straight-forward to check that -LqS satisfy the conditions for being a size. We can thus define
iterated outer-measure sizes as follows

‖F‖p
Lpν-LqµS =

ˆ
R+

pλpν
(
‖F‖-LqµS > λ

)dλ

λ
.

In this instance we explicitly specify the outer measure of the iterated outer-measure Lp spaces.
We claim that the following bounds hold for the two embeddings (1.41) and (1.42):

‖F‖Lp-LqSe .p,q ‖f‖Lp p ∈ (1,∞], q ∈
(
max(2, p′),∞

]
(1.67)

‖A‖Lp′ -Lq′Sm .p,q ‖f‖Lp p ∈ (1,∞], q ∈
(
1,∞

]
. (1.68)

Before proceeding to the proof of these two statements let us see how this allows us to deduce
Lp bounds for the form (1.40) associated to the Walsh Carleson operator on Lp×Lp′ for the full
range p ∈ (1,∞).
As a matter of fact it can be shown that∣∣∣∑

P∈P

F(P )A(P )|IP |
∣∣∣ . ‖FA‖L1

ν
-L1
µS

1

by using the property 1.10 twice. To apply it at the outer level of ν and -L1
µS

1 it is sufficient to
verify that for any D ∈ D ∣∣∣∑

P∈D
G(P )|IP |

∣∣∣ . ν(D)‖G‖-L1
µ(D)S1
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But this follows once again by property 1.10 recalling the definition of the size (1.48) and of the
measure (1.45) on trees. It holds that∣∣∣∑

P∈D
G(P )|IP |

∣∣∣ . ‖G1D‖L1
µS

1

since for every tree T ∈ T ∣∣∣∑
P∈T

G(P )1D|IP |
∣∣∣ . µ(T )‖G1D‖S1(T ).

Similarly, using outer-measure Hölder’s inequality 1.6 twice, it follows that

‖FA‖L1
ν
-L1
µS

1 . ‖F‖Lpν-LqµSe‖A‖Lp′ν -Lq′µ Sm
1

p
+

1

p′
= 1

1

q
+

1

q′
= 1

Clearly the above bounds hold as long as

‖FA‖-L1
µS

1 . ‖F‖-LqµSe‖A‖-Lq′µ Sm .

but this in turn follows from outer-measure Hölder’s inequality and the duality relation (1.49).
Putting the above steps together gives∣∣∣∑

P∈P

F(P )A(P )|IP |
∣∣∣ . ‖FA‖L1

ν
-L1
µS

1 . ‖F‖Lpν-LqµSe‖A‖Lpν-Lq′µ Sm . ‖f‖Lp‖a‖Lp′

for all p ∈ (1,∞) since for each such p one can find a Hölder tuple (q, q′) such that bounds (1.67)
and (1.68) hold.
We now pass to proving bounds (1.67) and (1.68).

1.4.1 Proof of iterated bounds for F

We will show bounds (1.67) by interpolating between weak endpoint results. In particular we
show that p ∈ (1, 2) the two bounds

‖F‖Lp,∞ν -L∞µ Se . ‖f‖Lp (1.69)

‖F‖
Lp,∞ν -Lp′,∞µ Se

. ‖f‖Lp (1.70)

hold.
We begin with (1.69) and we need to show that for any λ > 0 there exists a set Kλ ⊂ P such
that

ν(Kλ) . λ−p‖f‖pLp ‖F1P\Kλ‖-L∞Se . λ. (1.71)

Let us consider the dyadic Hardy-Littlewood p maximal function

Mpf(x) = sup
I3x

( 
I

|f(x)|pdx
)1/p

where the supremum is taken over all dyadic intervals. Since Mp is bounded on Lp it holds that

{x : Mpf(x) > λ} =
⋃
n∈N

In Kλ =
⋃
n∈N

Dn =
⋃
n∈N

D(In)

ν(Kλ) .
∑
n∈N

|In| . λ−p‖f‖pLp
(1.72)
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where In are the maximal dyadic intervals with respect to inclusion contained in {x : M1f(x) >
λ}. It remains to show the second claim of (1.71) i.e. that for any tree T ∈ T it holds that

‖F1P\Kλ‖Se(T ) . λ. (1.73)

If IT ⊂ In for some n ∈ N then F1P\Kλ = 0 and there is nothing to prove. Otherwise let us
do a Calderón-Zygmund decomposition of f1IT at frequency ξT ∈ ωT over the intervals In from
(1.72) for which In ⊂ IT .
By this decomposition we mean that

f1IT = g +
∑
n∈N

bn

where
g := gc +

∑
n∈N

gn gc = f1IT \
⋃
n∈N In

gn = 〈f ;wPn〉wPn |In|

where Pn = In × B|In|−1(ξT ) is the unique tile P ∈ P such that IP = In and ωT ⊂ ωP . The
“bad” terms are given by

bn = f1IT 1In − gn
and notice that for any P ∈ T \

⋃
n∈N Dn it holds that

〈bn; wP 〉 = 0.

and thus
F(P )1P\Kλ(P ) = 〈g; wP 〉1P\Kλ(P ).

Notice that for every x ∈W2 it holds that |gc(x)| ≤ λ and |gn(x)| . λ by maximality of In. Thus
|g(x)| . λ and (1.73) follows by L∞ boundedness of the embedding (1.41). We have concluded
the proof of (1.69).
To show bounds (1.70) we must prove that for every λ > 0 there exists a set Kλ such that

ν(Kλ) . λ−p‖f‖Lp ‖F1P\Kλ‖-Lp′,∞Se . λ. (1.74)

The second condition means that for any D ∈ D and for any τ > 0 there exists Eτ depending on
D and τ such that

‖F1D\Kλ1P\Eτ ‖Se . τ µ(Eτ ) . λp
′
τ−p

′
|ID|. (1.75)

Let us select Kλ as in (1.72) so that the first condition of (1.74) is satisfied. Fix a D ∈ D and
τ > 0 and let us carry out the tree selection algorithm described in the Section 1.3.4 for the
function F1D\Kλ . We may assume that τ . λ because we have already shown that (1.75) holds
with Eτ = ∅ if τ > Cλ with C > 1 large enough.
After finitely many steps L suppose that we have selected trees T1 · · ·TL. We may assume
that for every selected tree it holds that ITJ ⊂ ID and ITj 6⊂ In. Let us now consider the
multi-frequency Calderón-Zygmund decomposition of f1ID as follows. for each In ⊂ ID let
Ξn = {ξTj ∈ ωTj : ITj ⊇ In} be the frequencies of the tops of the trees Tj that intersect In. We
write

f1D = gc +
∑
n

gn +
∑
n

bn (1.76)

where

gc = f1D\⋃n In gn(x) =
∑
ξ∈Ξn

〈f1D;wIn×B|In|−1 (ξ)〉wIn×B|In|−1 (ξ)(x)|In| (1.77)
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and bn = f1D − gn. Notice that

|In|−1/2‖gn‖L2 ≤ |In|−1/2‖f1In‖L2

|In|−1/2‖gn‖L2 ≤ |Ξn|1/2|In|−1‖f1In‖L1

and by interpolation and maximality of In we obtain

|In|−1/2‖gn‖L2 . |Ξn|1/2−1/p′ |In|−1/p‖f1In‖Lp . |Ξn|1/2−1/p′λ

while |gc| < λ by construction of Kλ.
The bad part b =

∑
n bn is orthogonal to the wave packets in the selected trees:

P ∈
L⋃
j=1

Tj \Kλ =⇒ 〈
∑
n

bn; wP 〉 = 0.

so from the weak L2 bounds for the selection it follows that

L∑
j=1

|ITj | . τ−2

(ˆ
ID

|gc(x)|2dx+
∑

n : In⊂ID

ˆ
In

|gn(x)|2dx

)
.

Let N(x) =
∑L
j=1 1ITj be the counting function of the top intervals of the trees so that∑L

j=1 |ITj | =
´
ID
N(x). On each In the function N is constant on each In so we obtain

ˆ
ID

(
1 +N(x)

)
dx . λ2τ−2

ˆ
ID

(
1 + |N(x)|1−2/p′

)
dx

. λ2τ−2|ID|2/p
′(ˆ

ID

1 + |N(x)|dx
)1−2/p′

and thus
L∑
j=1

|ITj | .
ˆ
ID

N(x)dx . λp
′
τ−p

′
|ID|

as required.
For the case p ∈ [2,∞] we need to prove it is sufficient to replicate the above argument and using
{x : M2f(x) > λ} to construct Kλ.

1.4.2 Proof of iterated bounds for A

The proof of the bounds (1.68) also relies on a certain projection property. As we have done in
Section 1.3.5 we show the following bounds for the auxiliary embedding M given by (1.57):

‖M‖L∞-L∞S∞ . ‖a‖L∞ ‖M‖L∞-L1,∞S∞ . ‖a‖L∞
‖M‖L1,∞-L∞S∞ . ‖a‖L1 ‖M‖L1,∞-L1,∞S∞ . ‖a‖L1

and then we conclude by interpolation and using Lemma 1.14.
The first bound follows trivially since we have already shown in 1.3.5 that ‖M‖S∞ . ‖a‖L∞ .
Similarly We have that M is local so that for any D

‖M1D‖L1,∞(S∞) . ‖a1ID‖L1 .
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In fact for IP ⊂ ID, M(P ) depends on the values of a only on ID. This implies the bound

‖M‖-L1,∞(S∞) = sup
D∈D

‖M1D‖L1,∞(S∞)

|ID|
. ‖a‖L∞ .

If p = 1 then let us set

Kλ =
⋃
n∈N

Dn =
⋃
n∈N

D(In) {x : M1a(x) > λ} =
⋃
n∈N

In

=⇒ ν(Kλ) .
∑
n∈N

|In| . λ−p‖f‖pLp

where In are the maximal dyadic intervals with respect to inclusion contained in {x : M1a(x) >
λ}. Consider the “stopped” function

ã(x) = a(x)1W2\
⋃
n In

(x) +
∑
n

1In(x)

 
In

a(y)dy

that by maximality of In satisfies |ã(x)| . λ. Using definition (1.57) it follows that

M(P ) = M̃(P ) ∀P : IP 6⊂
⋃
n

In

where

M̃(P ) =
1

|IP |

ˆ
IP

|ã(x)|1ωP (c(x))dx.

Thus it follows from the reasoning for p =∞ that for

‖M1P\Kλ‖L∞S∞ . ‖ã‖L∞ . λ ‖M1P\Kλ‖L1,∞S∞ . ‖ã‖L∞ . λ

as required.

1.4.3 Sparse domination

We now show how the bounds (1.67) and (1.68) can be used to obtain sparse bounds for the
Walsh Carleson operator. By this we mean∣∣∑

P∈P

〈f ; wP 〉〈a(·); 1ωPd
(
c(·)
)
wP (·)〉|IP |

∣∣ . sup
S

∑
I∈S

|I|
( 
I

|f |s
)1/s  

I

a (1.78)

for any s > 1. The supremum is taken over all sparse grids S i.e. collections of intervals that
satisfy bounds (0.10). We have shown in 1.2.3 that the expression on the right is uniformly
bounded in Lp × Lp′ for all p ∈ (s,∞).
We begin by noticing that the bounds (1.67) and (1.68) can be rewritten as follows. Fix s > 1,
q ∈ (s′,∞), andq′ ∈ (1,∞) such that 1

q + 1
q′ = 1. Given any strip D ∈ D there exists a subset

KD ⊂ D such that
1

|ID|1/s
‖F1D\KD‖LqµSe .

1

|ID|1/s
‖f1ID‖Ls

1

|ID|
‖A1D\KD‖Lq′µ Se .

1

|ID|
‖a1ID‖L1

(1.79)
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and with
|ν(KD)| ≤ εν(D) for some ε < 1. (1.80)

This follows by applying the iterated embedding bounds to the functions f1ID and a1ID respec-

tively and setting K = K
(f)
D ∪K(a)

D to be union of the exceptional sets for f1D and a1D. While
this is not strictly necessary, recall that

K
(f)
D =

⋃
n

D(In)
⋃
n

In =

{
x : Msf(x) > C|ID|−1/s‖f1ID‖Ls

}
K

(a)
D =

⋃
n

D(In)
⋃
n

In =

{
x : M1a(x) > C|ID|−1‖a1ID‖L1

}
for some C � 1 be a large enough. By a limiting procedure we can suppose that the sum on the
left hand side of (1.78) is taken over a finite collection of tiles. Set S0 = I0 for some I0 large
enough so that it contains all intervals IP of the finite collection of tiles. Iteratively define

Sn+1 =
⋃
I∈Sn

{J ∈ JKD(I)
}

where JKD is a family of intervals that generates a covering of the exceptional set KD i.e.∑
J∈JKD

|J | ≈ ν(KD)
⋃

J∈JKD

D(J) ⊃ KD

and J ∈ JKD may be taken pairwise disjoint. Let us then set S =
⋃∞
n=0 Sn so that it holds that

∑
P∈P

F(P )A(P )|IP | =
∞∑
n=0

∑
I∈Sn

∑
P∈D(I)\

⋃
J∈Sn+1

D(J)

F(P )A(P )|IP |.

Using (1.79), outer-measure Hölder inequality and the fact that by construction

KD(I) ⊂
⋃
J∈Sn+1

D(J)

it holds that ∣∣∑
P∈P

F(P )A(P )|IP
∣∣ . ∞∑

n=0

∑
I∈Sn

|I| 1

|I|1/s
‖f1I‖Ls

1

|I|
‖a1I‖L1

=
∑
I∈S

|I|
( 
I

|f |s
)1/s  

I

a

as required.
It remains to check that S is sparse. Suppose that I ∈ Sn, then

∑
J∈S
J⊂I

|J | =
∞∑

m=n+1

∑
J∈Sm
J⊂I

|J | .
∞∑

m=n+1

εm−n|I| . |I|.

Since given any two intervals J, J ′ ∈ S either they are disjoint or one is contained inside the
other the above bounds follows for any dyadic I.
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Chapter 2

Variational Carleson embeddings
into the upper 3-space

Computations are like parsley:
they go well with anything.

–P.A.

This chapter contains the result of the paper [Ura16].
In this chapter we formulate embedding maps into time-frequency space related to the Carleson
operator and its variational counterpart. We prove bounds for these embedding maps by iterating
the outer measure theory of [DT15]. Introducing iterated outer Lp spaces is a main novelty of
this paper.

2.1 Introduction

In this paper we consider the Carleson Operator

Ccf(z) :=

ˆ +∞

c(z)

f̂(ξ)eiξzdξ, (2.1)

with c : R→ R a Borel-measurable stopping function. The Variational Carleson Operator studied
by Oberlin et al. in [OSTTW12] is given by:

VrCcf(z) =

(∑
k∈Z

∣∣Cck+1
f(z)− Cckf(z)

∣∣r)1/r

(2.2)

where c : Z × R → R ∪ {+∞} is a stopping sequence of Borel-measurable functions such that
ck(z) ≤ ck+1(z) for all z ∈ R and k ∈ Z. The boundedness on Lp (R) with p ∈ (1,∞) of these
operators, uniformly with respect to the stopping functions c and c, implies the famous Carleson
Theorem on the almost everywhere convergence of the Fourier integral for functions in Lp(R).
The main technique for bounding these operators were first introduced by Carleson in his paper
[Car66] on the convergence of Fourier series for L2 ([−π/2, π/2)) functions and is often referred
to as time-frequency analysis.
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The purpose of this paper is to discuss embedding maps into time-frequency space X = R ×
R × R+ relevant to (2.1) and (2.2). In Theorems 2.1, 2.2, and 2.3 we show the boundedness
properties of these embedding maps in terms of appropriately defined norms. Generally speaking
an embedding map is a representation of a function by another function defined on the symmetry
group of the problem at hand. The appropriate norms for dealing with these embedded functions
are the outer measure Lp norms introduced in [DT15] in the context of the Bilinear Hilbert
Transform, an operator with the same symmetries as (2.1) and (2.2).

Theorem 2.2 is an extension of the result of [DT15] to 1 < p < 2. For our proof we introduce
iterated, or semi-direct product, outer measure Lp spaces and incorporate the idea by Di Plinio
and Ou [DPO15] of using multi-frequency Calderón-Zygmund theory from [NOT10]. The em-
bedding Theorems 2.1 and 2.3 are somewhat dual to 2.2 for the purpose of bounding the bilinear
form associated to (2.1) and (2.2) respectively.

In [OSTTW12] the operator (2.2) has been shown to be bounded for p ∈ (1,∞) and r ∈ (2, p′).
The proof in the range p ∈ (2, r) requires only theorems that make use of non-iterated outer
measure spaces of [DT15]. While initially introduced only to address the range p ∈ (r′, 2], iterated
outer measure spaces surprisingly provide a direct proof in the complete range p ∈ [r,∞), and
hereby explain ad-hoc interpolation techniques used in [OSTTW12].

p ∈ (r′,∞)

r ∈ (2,∞]

1

1

1
2

1
2

1
p

1
r

p ∈ (r,∞)

p ∈ (2, r)

p ∈ (r′, 2)

Figure 2.1: Bounds of VrCc on
Lp(R).

The advantage of reasoning in terms of embedding maps
is also attested by the recent developments in [CDPO16]
that prove sharp weighted bounds for the Bilinear Hilbert
Transform using the embedding from [DPO15]. In a sim-
ilar spirit, the the embedding maps and the results of the
present paper are used to obtain sparse domination and
weighted boundedness for the Variational Carleson Oper-
ator by Di Plinio, Do, and the author in [DPDU16].

We also point out the recent paper [DMT17] in which Do,
Muscalu, and Thiele use outer-measure Lp spaces to pro-
vide variational bounds for bilinear Fourier inversion inte-
grals, that are bilinear versions of (2.2).

On a historical note, we point out Hunt’s extension
[Hun68] to Lp with p ∈ (1,∞) of Carleson’s pointwise
almost-everywhere convergence result [Car66] for Fourier
series of functions on L2 ([−π/2, π/2)). Carleson’s and
Hunt’s results depend on a fine analysis of the properties of a function on the torus. In [Fef73]
Fefferman concentrated on proving the same result by a careful study of the operator (2.1). The
wave-packet representation for the operator that is crucial for making use of embedding maps
appeared in [LT00] that provides a more symmetric approach encompassing the aforementioned
two ideas. This approach inspired both [OSTTW12] and the present paper.

Finally, we emphasize that we formulate an embedding map into the time-frequency space pa-
rameterized by continuous parameters, in the vein of [DT15]. This allows us to avoid model-sum
operators and averaging procedures ubiquitous in other works in time-frequency analysis. Fur-
thermore, such a formulation proves to be more versatile and in particular the results of the
present paper imply all the bounds for the discretized model used in [OSTTW12].

2.1.1 The Carleson operator

For simplicity we begin by discussing the Carleson operator (2.1) that is a specific instance of
(2.2) for r = +∞. The operator is given pointwise by the Fourier multiplier operator associated
to the multiplier 1[c(z),+∞)(ξ) applied to f . This can be expressed in terms of a wavelet frame
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centered at frequency c(z) using a continuous Littlewood-Paley decomposition:

Ccf(z) =

ˆ
R+

ˆ
R
f ∗ ψη,t ∗ ψη,t(z)χ (t(η − c(z))) dηdt (2.3)

where

ψη,t(z) := t−1eiηz ψ
(z
t

)
(2.4)

with ψ ∈ S(R) a suitably normalized, non-negative, even, generating wavelet with Fourier trans-

form ψ̂ supported in a small ball Bb. We use the notation Br(x) := (x − r, x + r) to denote a
ball of radius r centered at x, while if x = 0 we omit it by simply writing Br. The non-negative
cutoff function χ satisfies

χ ∈ C∞c (Bε(d)) Bε(d) ⊂ (b, +∞)

ˆ
χ = 1. (2.5)

Given two functions f, a ∈ S(R) set

F (y, η, t) := f ∗ ψη,t(y) (2.6)

A(y, η, t) :=

ˆ
R
a(z)ψη,t(y − z)χ (t(η − c(z))) dz. (2.7)

The arguments of the above functions are points of the time-frequency space X = R×R×R+ that
parameterizes the defining symmetries of the class of operators defined by (2.1) i.e. translation
of the function, translation of its Fourier transform, and dilation. The outer measure Lp spaces
allow one to deal with the overderminancy of the wave-packets.
The wave packet representation (2.3) gives the inequality∣∣∣∣ˆ

R
Ccf(z) a(z)dz

∣∣∣∣ ≤ ∣∣∣∣˚
X
F (y, η, t)A(y, η, t) dydηdt

∣∣∣∣ . (2.8)

By duality the bound of the operator (2.1) on Lp(R) follows from bounds on Lp(R)× Lp′(R) of
the bilinear form on the left hand side of the previous display.
The abstract framework of outer measure Lp spaces provides us with the Hölder type bound∣∣∣∣˚

X
F (y, η, t)A(y, η, t) dηdydt

∣∣∣∣ . ‖F‖Lp-Lq(Se)‖A‖Lp′ -Lq′ (Sm) (2.9)

with 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Appearing on the right are iterated outer Lp quasi-norms that
we elaborate on in Section 2.2.
The embedding maps defined via equations (2.7) and (2.6), that we call “mass” and “energy”
embeddings for historical reasons (compare with [LT00]), satisfy the bounds

‖A‖Lp′-Lq′ (Sm) . ‖a‖Lp′ , (2.10)

‖F‖Lp-Lq(Se) . ‖f‖Lp . (2.11)

Theorem 2.1 (Mass embedding bounds). For any p′ ∈ (1,∞], q′ ∈ (1,∞], and for any function
a ∈ Lp

′
(R) the bounds (2.10) for the embedding (2.7) hold with a constant independent of the

Borel measurable function c : R→ R.

Theorem 2.2 (Energy embedding bounds). For any p ∈ (1,∞], q ∈ (max(2; p′),∞], and for
any f ∈ Lp(R) the bounds (2.11) for the embedding (2.6) hold.
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Theorem 2.1 follows as a corollary of Theorem 2.3 below while Theorem 2.2 will be proven in
Section 2.6.
The boundedness of the Carleson Operator on Lp(R) follow as a result of the above discussion.
Indeed for any p, p′ ∈ (1,∞) with 1

p + 1
p′ = 1 one can find q, q′ ∈ (1,∞) such that 1

q + 1
q′ = 1

and bounds (2.10) and (2.11) hold.
We remark that iterated outer measure spaces are used to address the case p ∈ (1, 2). In Section
2.6 we show that if p ∈ (2,∞) a the non-iterated version of outer measure Lp spaces are sufficient
to prove Lp boundedness of (2.1).

2.1.2 The variational Carleson operator

The operator (2.2), introduced and studied in [OSTTW12], is bounded on Lp(R) for r ∈ (2,∞]
and p ∈ (r′,∞). The above paper also shows that this range is sharp in the sense that that
strong Lp bounds do not hold outside this range (see Figure 2.1).
By duality it is sufficient to prove the bilinear a priori bound∣∣∣∣∣

ˆ
R

∑
k∈Z

ak(z)

ˆ ck+1(z)

ck(z)

f̂(ξ)eiξzdξ dz

∣∣∣∣∣ . ‖f‖Lp‖a‖Lp′ (lr′ ). (2.12)

with a constant independent of the stopping sequence c. For the above expression to make sense
we require that f ∈ S(R) while a ∈ Lp′(lr′) i.e. z 7→ a(z) = (ak(z))k∈Z is a function on R such
that for every z ∈ R its value is the sequences a(z) = (ak(z))k∈Z ∈ lr

′
(Z). The function a is

Borel measurable in Bochner sense and

‖a‖Lp′ (lr′ ) :=

(ˆ
R
‖a(z)‖p

′

lr′
dz

)1/p′

<∞.

Analogously to (2.8), the left had side of (2.12) admits a wave-packet domination∣∣∣∣∣
ˆ

R

∑
k∈Z

ak(z)

ˆ ck+1(z)

ck(z)

f̂(ξ)eiξzdξ dz

∣∣∣∣∣ ≤
˚

X
|F (y, η, t)A(y, η, t)|dydηdt. (2.13)

where the embedding map a 7→ A is given by

A(y, η, t) := sup
Ψ

∣∣∣∣∣
ˆ

R

∑
k∈Z

ak(z)Ψ
ck(z),ck+1(z)
y,η,t (z)dz

∣∣∣∣∣ . (2.14)

The supremum above is taken over all possible choices of left or right truncated wave packets
Ψ
c−,c+
y,η,t . A left truncated wave packet Ψ

c−,c+
y,η,t at (y, η, t) ∈ X is a S(R) function parameterized by

c− < c+ ∈ R ∪ {+∞}. The parameterization satisfies the properties below. The following three
functions of the variable z

e−iη(y+tz)tΨ
c−,c+
y,η,t (y + tz) (2.15)

t−1∂c−

(
e−iη(y+tz)Ψ

c−,c+
y,η,t (y + tz)

)
t−1∂c+

(
e−iη(y+tz)tΨ

c−,c+
y,η,t (y + tz)

)
are bounded in S(R) uniformly for all (y, η, t) ∈ X and c− < c+ ∈ R. For some constant b > 0
the functions Ψ

c−,c+
y,η,t satisfy

spt Ψ̂
c−,c+
y,η,t ⊂ Bt−1b(η). (2.16)
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For some constants d, d′, d′′ > 0, and ε > 0 it holds that

Ψ
c−,c+
y,η,t 6= 0 only if

{
t(η − c−) ∈ Bε(d)

t(c+ − η) > d′ > 0
(2.17)

Ψ
c−,c+
y,η,t = Ψ

c−,+∞
y,η,t if t(c+ − η) > d′′ > d′ > 0. (2.18)

The wave packet Ψ
c−,c+
y,η,t is right truncated if Ψ

−c+,−c−
y,−η,t is left truncated.

The main result of this paper is the following bounds for the embedding (2.14) that are analogous
to the bounds (2.10).

Theorem 2.3 (Variational mass embedding bounds). For any r′ ∈ [1, 2), p′ ∈ (1,∞], and
q′ ∈ (r′,∞] and any function a ∈ Lp′(lr′) the function A defined by (2.14) satisfies the bounds

‖A‖Lp′-Lq′ (Sm) . ‖a‖Lp′(lr′) p′ ∈ (1, ∞] q′ ∈ (r′,∞]; (2.19)

furthermore the weak endpoint bounds

‖A‖Lp′-L∞(Sm) . ‖a‖Lp′ (lr′ ) p′ ∈ (1, ∞] (2.20)

‖A‖L1,∞-Lq′ (Sm) . ‖a‖L1(lr′ ) q′ ∈ (r′,∞]

‖A‖L1,∞-Lr′,∞(Sm) . ‖a‖L1(lr′ )

hold. All the above inequalities hold with constants independent of the stopping sequence c ap-
pearing in (2.14).

We refer to Section 2.2 for the description of the outer measure structure on X and for the precise
definition of the iterated outer measure Lp norms appearing on the left hand sides.

Corollary 2.4 (Boundedness of the variational Carleson operator [OSTTW12]). The operator
(2.2) defined pointwise for f ∈ S(R) extends to a bounded operator on Lp(R) for r ∈ (2,∞] and
p ∈ (r′,∞).

Given Theorem 2.3 the above can be obtained analogously as for the operator (2.1). For for p
and r set 1

p′ = 1− 1
p , 1

r′ = 1− 1
r , and choose q and q′ so that 1

q + 1
q′ = 1 and the bounds (2.11)

and (2.19) hold. Using the outer measure Hölder inequality (2.9) with the variational embedded
function A in lieu of A and the wave-packet representation (2.13) we obtain the required bound
(2.12).
Theorem 2.1 follows from from Theorem 2.3 when r =∞ by formally setting

ak(z) =

{
a(z) if k = 0

0 otherwise
ck(z) =


−∞ if k < 0

c(z) if k = 0

+∞ if k > 0

(2.21)

In particular the term ψη,t(y− z)χ
(
t(η− c−)

)
appearing in (2.7) are left truncated wave packets

with respect to the parameters c− and c+ = +∞.

2.1.3 Structure of the paper

The rest of this paper is organized as follows. In Section 2.2 we define the outer measure structure
on X. We then recall properties of outer measure Lp spaces and generalize them to the iterated
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construction. In addition we illustrate a limiting argument for maps to outer measure Lp spaces
that allows to consider the bounds (2.10), (2.11), and (2.19) as a-priori estimates. We also
prove interpolation inequalities that allow us to restrict the proof only to the the weak endpoints
of the above bounds. Finally, we formulate the abstract outer Hölder inequality and an outer
Radon-Nikodym Lemma that imply inequality (2.9).
In Section 2.3 we prove the wave-packet domination bound (2.13). In particular it is shown that
one can choose both the geometric parameters of the outer measure space (see Section 2.2) and
the parameters of the truncated wave-packets in a compatible way i.e. so that both Thoerems
2.2 and 2.3 as well as the conditions (2.16), (2.17) hold. This is done by providing a wave-packet
representation for multipliers of the form 1[c−,c+) with c− < c+ ∈ R ∪ {+∞}. For any stopping
sequence c this yields an embedded function Ac(y, η, t) so that

ˆ
R

∑
k∈Z

ak(z)

ˆ ck+1(z)

ck(z)

f̂(ξ)eiξzdξ dz =

˚
X
F (y, η, t)Ac(y, η, t)dydηdt. (2.22)

The embedded function Ac is pointwise dominated by A and the map a 7→ Ac is shown to be
linear. Furthermore the same procedure shows that the inequality in (2.8) is actually an equality
i.e. ˆ

R
Ccf(z) a(z)dz =

˚
R×R×R+

F (y, η, t)A(y, η, t) dydηdt. (2.23)

In Section 2.4 we introduce an auxiliary embedding map for which we show iterated outer measure
bounds. The crucial result is given by the covering Lemma 2.19 that allows one to control the
measure of super-level sets of this embedding map and by a projection Lemma 2.22 that implies
iterated bounds.
In Section 2.5 we actually prove Theorem 2.3 by showing the the auxiliary embedding map of
Section 2.4 dominates the embedding (2.14) in terms of sizes.
Finally, in Section 2.6 we show that bound (2.11) holds: this follows from an adaptation of the
results of [DPO15]. We also remark how in the case p ∈ (2, r) a non-iterated version of outer
measure Lp spaces is enough to obtain Lp bounds for (2.2) and thus for (2.1) with p ∈ (2,∞).

2.1.4 Notation

We quickly recall some useful notation.
We say that A(x) . B(x) if there exists a constant C > 0 such that A(x) ≤ CB(y) for all x, y in
the domains of A and B respectively. Unless otherwise specified the constant C > 0 is absolute.
We may emphasize the dependence on a specific parameter p by writing A(x) .p B(y). We write
A(x) ≈ B(y) if A(x) . B(y) and A(x) & B(y).
We denote open and close Euclidean balls of R as

Br(x) := (x− r, x+ r) Br := (−r,+r) Br(x) := [x− r, x+ r] Br := [−r,+r].

We indicate by 1Θ the characteristic function of the set Θ i.e.

1Θ(x) :=

{
1 if x ∈ Θ

0 if x /∈ Θ

For an arbitrary large N > 0 we introduce the smooth bump function

W (z) :=
(
1 + |z|2

)−N/2
Wt(z) := t−1W

(z
t

)
. (2.24)
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We define  
Br(x)

f(z)dz :=
1

2r

ˆ
Br(x)

f(z)dz.

The operators M and Mp are the Hardy-Littlewood maximal function i.e.

Mf(z) := sup
t∈R+

 
Bt(z)

|f(z′)|dz′ (2.25)

Mpf(z) := sup
t∈R+

( 
Bt(z)

|f(z′)|pdz′
)1/p

.

Given a function ϕ ∈ S(R) we obtain its frequency translates and dilates by setting

ϕη,t(z) := t−1eiηzϕ
(z
t

)
.

The stopping sequence c will denote a Borel measurable function defined on R with values in
increasing sequences in R ∪+∞ i.e.

z 7→ c(z) = (ck(z))k∈Z −∞ < · · · ≤ ck−1(z) ≤ ck(z) ≤ ck+1(z) ≤ · · · ≤ +∞.

Similarly a will denote a Borel Bochner-measurable function on R with values in lr
′

i.e.

z 7→ a(z) = (ak(z))k∈Z ∈ lr
′
.

We use the notation Lp(S) and Lp-Lq(S) to denote (iterated) outer measure Lp spaces. The
(outer-) measure of the space is omitted from the notation. We distinguish the above from Lp

that are classical Lebesgue spaces. In the case of of Lp spaces on R the measure is the Lebesgue
measure; when necessary we may emphasize the measure L on the space by writing Lp(dL).

2.2 Outer measures on the time-frequency space

We begin the description of the outer measure on the time-frequency space X by introducing
a family of distinguished generating sets. The tent T (x, ξ, s) ⊂ X indexed by the top point
(x, ξ, s) ∈ X is the set

T (x, ξ, s) := T (i)(x, ξ, s) ∪ T (e)(x, ξ, s) (2.26)

T (i)(x, ξ, s) :=
{

(y, η, t) : |y − x| < s, t(η − ξ) ∈ Θ(i), t < s
}

T (e)(x, ξ, s) :=
{

(y, η, t) : |y − x| < s, t(η − ξ) ∈ Θ(e), t < s
}

where

Θ = (α−, α+) Θ(i) = (β−, β+) Θ(e) = Θ \Θ(i) (2.27)

are geometric intervals such that 0 ∈ Θ(i) ⊆ Θ i.e. α− ≤ β− < 0 < α+ ≤ β+. We refer to T (i)

and T (e) as the interior and exterior parts of the tent T . To define the iterated outer measure
structure we introduce strips D(x, s) ⊂ X as

D(x, s) := {(y, η, t) : |y − x| < s, t < s} . (2.28)



44 2. Variational Carleson embeddings into the upper 3-space

t

y

(x, s)

x+ sx− s

t

η

(ξ, s)
ξ+α+s−1ξ+α−s−1

T (i)

T (e)

T (e)

Figure 2.2: The tent T (x, ξ, s).

We indicate the family of all tents by T and the family of all strips by D.
The specific values of the geometric intervals Θ, Θ(i), and Θ(e) in (2.26) are often inessential.
However, the freedom of choosing appropriate parameters was shown to be important in [DT15].
Theorem 2.3 holds as long as

Bb ⊂ Θ(i) ⊂ Bd′ Bε(d) ∪Bε(−d) ⊂ Θ(e) (2.29)

with b, d, d′, and ε appearing in (2.16), (2.17), and (2.18). As a matter of fact, if one were to
consider only left truncated wave-packets in (2.14) then Theorem 2.3 would hold as long as

Bb ⊂ Θ(i) − d′ < β− Bε(d) ⊂ Θ(e) ∩ R+ = [β+, α+). (2.30)

Theorem 2.1 holds as long as satisfies

Bb ⊂ Θ(i) sptχ ⊂ Θ(e) ∩ R+ = [β+, α+). (2.31)

Theorem 2.2 holds as long as Bb ⊂ Θ(i). From now on we will allow all our implicit constants to
depend on Θ and Θ(i).
We now define the outer measures µ and ν by introducing the pre-measures µ, and ν on the
generating sets

µ(T (x, ξ, s)) := s ν(D(x, s)) := s. (2.32)

The outer measure of an arbitrary subset E ⊂ X are obtained via a covering procedure using
countable unions of generating sets i.e.

ν(E) := inf
{∑
n∈N

ν(Dn) : E ⊂
⋃

Dn∈D
n∈N

Dn,
}

(2.33)

and similarly for µ using µ and the family T. We say that ν and µ are generated by the
pre-measures (ν,D) and (µ,T) respectively. We call an outer measure space a pair (X, µ) of a
separable complete measure space X and an outer measure µ : 2X → R+ ∪ {+∞}. We will
henceforth suppose that µ is generated by pre-measures (µ,T) where T is a collection of subsets
T ⊂ X that we assume to be Borel measurable.
The final ingredient we need for introducing outer measure Lp spaces is a notion of how large
a function on X is. We call a size any quasi-norm ‖ · ‖S on Borel functions on X i.e. a positive
functional that satisfies the following properties. Monotonicity: for any Borel function G1 and
G2

|G1| ≤ |G2| =⇒ ‖G1‖S . ‖G2‖S . (2.34)
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Positive homogeneity: for all Borel functions G

‖λG‖S = |λ|‖G‖S ∀λ ∈ C. (2.35)

Quasi-triangle inequality: for any sequence of Borel functions Gk and for some quasi-triangle
constant cs ≥ 1

‖
∞∑
k=0

Gk‖S ≤
∞∑
k=0

ck+1
s ‖Gk‖S (2.36)

We define the S, µ - super-level outer measure as

µ (‖G‖S > λ) := inf
{
µ(Eλ) : ‖G1X\Eλ‖S ≤ λ

}
(2.37)

where the lower bound is taken over Borel subset Eλ of X. The outer-Lp quasi-norms for p ∈
(0,∞] are give by

‖G‖pLp(S) :=

ˆ
λ∈R+

pλpµ (‖G‖S > λ)
dλ

λ
;

weak outer Lp quasi-norms are similarly given by

‖G‖pLp,∞(S) := sup
λ∈R+

pλpµ (‖G‖S > λ) .

The outer Lp spaces are subspaces of Borel functions on X for which the above norms are finite.
The expressions defining outer Lp quasi-norms are based on the super-level set representation
of the Lebesgue integral, however the expression µ (‖G‖S > λ) that appears in lieu of the clas-
sical µ ({x : |g(x)| > λ}) cannot always be interpreted as a measure of a specific set. Generally
speaking, Lp spaces for p ∈ (0,∞) are interpolation spaces between the size quasi-norm and the
outer measure of the support of a function.
Using a slight abuse of notation we say that a size ‖ · ‖S is generated by (‖ · ‖S(T ),T) where
‖ · ‖S(T ) are sizes indexed by generating sets T ∈ T and in particular

‖G‖S := sup
T∈T
‖G‖S(T ). (2.38)

The construction of iterated outer Lp spaces is based on using localized versions of outer Lq

quasi-norms as sizes themselves. Notice that outer Lq norms are quasi-norms since they too
satisfy the quasi-triangle inequality. Given a size S and a generating pre-measure (ν,D), outer
-Lq(S) sizes are generated by (-Lq(S)(D),D) where

‖G‖-Lq(S)(D) :=
‖F1D‖Lq(S)

ν (D)
1/q

(2.39)

so ‖G‖-Lq(S) := supD∈D ‖G‖-Lq(S)(D). Consequently we construct iterated outer Lp spaces as

‖G‖pLp-Lq(S) :=

ˆ
τ∈R+

p τp ν
(
‖G‖-Lq(S) > τ

) dτ

τ
. (2.40)

To deal with embedded functions F and A from (2.6) and (2.14) we introduce the respective sizes
‖ · ‖Se and ‖ · ‖Sm that are generated by (Se(T ),T) and (Sm(T ),T) respectively. The two families
of “local” sizes Se(T ) and Sm(T ) are given by

‖F‖Se(T ) :=
‖F1T (e)‖L2

µ (T )
1/2

+ ‖F1T ‖L∞

= ‖F‖S2(T (e)) + ‖F‖S∞(T )

(2.41)
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‖A‖Sm(T ) :=
‖A1T ‖L2

µ (T )
1/2

+
‖A1T (i)‖L1

µ (T )

= ‖A‖S2(T ) + ‖A‖S1(T (i)).

(2.42)

Here L2, L∞, and L1 refer to classical Lebesgue Lp norms on X with respect to the Borel measure
dydηdt. The local sizes ‖·‖Se(T ) coincide with the ones introduced on the upper 3-space in [DT15]
while ‖ · ‖Sm(T ) are dual to the former in an appropriate sense.

We conclude the construction of outer measure Lp spaces with a useful remark about the specific
geometric properties of coverings with tents T. For any tent T (x, ξ, s) we define its R-enlargement
with R > 1 as

RT (x, ξ, s) :=
⋃

|ξ′−ξ|<Rs−1

T (x, ξ′, Rs). (2.43)

Notice that µ(RT ) . R3µ(T ) with a constant that depends on the geometric intervals (2.27)
but not on R. As a matter of fact the set RT can be covered by a finite collection of tents
T (x, ξi, Rs) by choosing ξi such that⋃

i

{η : Rs(η − ξi) ∈ Θ} ⊃
⋃

|ξ′−ξ|<Rs−1

{η : Rs(η − ξ′) ∈ Θ}

The number of points ξi needed to do this is bounded up to a constant factor by R2 and thus
µ (RT ) . R3µ(T ).

2.2.1 Properties of outer measure Lp spaces.

We recall some important properties of outer measure Lp spaces and elaborate on how they carry
over to iterated outer-measure spaces. Generally X may be any locally compact complete metric
space; in our case X = R× R× R+ with

dist
(
(y, η, t); (y′, η′, t′)

)
= t−1|y − y′|+ t|η − η′|+ | log

t

t′
|.

Dominated convergence

While outer measure Lp spaces fall into the class of quasi-Banach spaces, we record only some
functional properties that are useful for our applications.

Recall that the quasi-triangle inequality for sizes (2.36) holds for both finite and infinite sums.
Given an outer measure space (X, µ) and a size ‖ · ‖S , the outer measure Lp quasi-norms also
satisfy the quasi-triangle inequality:

∥∥∥ ∞∑
k=0

Gk

∥∥∥
Lp(S)

.c′s,cs,p

∞∑
k=0

c′k+1
s ‖Gk‖Lp(S) (2.44)

for any c′s > cs where cs is the quasi-triangle constant of the size S. As a matter of fact, for any
λ > 0 and for every k choose Eλ,k such that

‖Gk1X\Eλ,k‖S ≤ λ ‖Gk‖pLp(S) .
ˆ

R+

pλpµ(Eλ,k)
dλ

λ
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and set Eλ =
⋃∞
k=0Eλc′−k−1

s ,k so that using the quasi-triangle inequality for ‖ · ‖S one has

µ(Eλ) ≤
∞∑
k=0

µ
(
Eλc′−k−1

s ,k

) ∥∥∥ ∞∑
k=0

Gk1Ecλ

∥∥∥
S
≤ λ cs

(c′s − cs)
.

Thus ∥∥∥ ∞∑
k=0

Gk

∥∥∥p
Lp(S)

≤ p
(

cs
c′s − cs

)p ˆ
R+

λpµ(Eλ)
dλ

λ

≤
(

cs
c′s − cs

)p ∞∑
k=0

c′p(k+1)
s ‖Gk‖pLp(S).

If p ≥ 1 then this concludes the proof. Otherwise for any ε > 0 one has∥∥∥∥∥
∞∑
k=0

Gk

∥∥∥∥∥
Lp(S)

.ε,p,c,cs

∞∑
k=0

(1 + ε)k+1c′k+1
s ‖Gk‖Lp(S)

but since c′s > cs was arbitrary this also allows us to conclude.
This fact is crucial to be able to use localized outer -Lp quasi-norms as sizes themselves. Further-
more we deduce the following domination property.

Corollary 2.5. Suppose that G is a Borel function on X and |G| ≤ lim supn→∞ |Gn| pointwise
on X for some sequence of Borel functions Gn that satisfy

‖Gn+1 −Gn‖Lp(S) ≤ C c′−ns ‖G0‖Lp(S) for some c′s > cs.

Then

‖G‖Lp(S) .C,p,c′s,cs ‖G0‖Lp(S).

This follows from (2.44) and from the monotonicity properties of sizes and thus of outer Lp

quasi-norms.
Using this property we will restrict ourselves to proving bounds (2.10), (2.11), and (2.19) for
a dense class of functions. In particular we will always consider the functions in play to be
smooth and rapidly decaying. For example, given a function a ∈ Lp(lr′) one may always choose
a sequence of approximating functions a(n) ⊂ C∞c (lr

′
) such that

‖a(0)‖Lp(lr′ ) . ‖a‖Lp(lr′ )

‖a(n+1) − a(n)‖Lp(lr′ ) . 2−Nn‖a‖Lp(lr′ )

for an arbitrary N > 1. Considering the sequence embedded functions An associated to a(n) via
(2.14), the pointwise relation A = limn An clearly holds. Corollary 2.5 applied to An allows us to
conclude that if bounds of Theorem 2.3 hold for the functions a(n) they also hold for a. Thus we
can restrict to proving the bounds as a priori estimates i.e. we can restrict to showing that they
hold for a dense class of functions a. The same can be done for the energy embedding bounds of
Theorem 2.2.

Hölder and Radon-Nikodym inequalities

We now illustrate the abstract outer measure results from which inequality (2.9) follows. The
first two statements relate to general outer measure spaces and are similar to what was obtained
in [DT15].
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Lemma 2.6 (Radon-Nikodym domination). Consider (X, µ) an outer measure space with µ,
generated by (µ,T) as in (2.33), endowed with a size ‖·‖S generated by (‖·‖S(T ),T). Suppose that
the generating family T consists of Borel sets and satisfies the covering condition i.e. X =

⋃
i∈N Ti

for some countable sub-collection Ti ∈ T.
If L is a positive Borel measure on X such that

ˆ
T

|G(P )|dL(P ) ≤ C‖G‖S(T ) µ(T ) ∀T ∈ T (2.45)

and for any Borel function G and

µ(E) = 0 =⇒ L(E) = 0 ∀E ⊂ X Borel (2.46)

then for any Borel function G the bound∣∣∣ˆ
X
G(P )dL(P )

∣∣∣ . ∥∥G∥∥
L1(S)

(2.47)

holds.

The proof of this Lemma is similar to the one in [DT15].

Proof. Suppose ‖G‖L1(S) <∞, otherwise there is nothing to prove. For each k ∈ Z let E′2k be a
Borel set such that

‖G1X\E′
2k
‖ ≤ 2k µ(E′2k) ≤ 2µ

(
‖G‖S > 2k

)
.

so ‖G‖L1(S) .
∑+∞
k=−∞ 2kµ(E′2k). Set

E2k :=

+∞⋃
l=k

E′2k ∆E2k := E2k−1 \ E2k E0 =

+∞⋃
k=−∞

E2k E∞ =

+∞⋂
k=−∞

E2k .

We have∣∣∣ˆ
X
G(P )dL(P )

∣∣∣ ≤ ˆ

X\E0

|G(P )|dL(P ) +

+∞∑
k=−∞

ˆ

∆E
2k

|G(P )|dL(P ) +

ˆ

E∞

|G(P )|dL(P ).

where

‖G1∆E
2k
‖S ≤ 2k ‖G‖L1(S) .

+∞∑
k=−∞

2kµ(∆E2k).

For every k there exists a countable covering
⋃
l∈N Tk,l ⊃ ∆E2k such that∑

l∈N

µ(Tk,l) ≤ 2µ(∆E2k).

For each k ∈ Z apply (2.45) to obtain

ˆ
∆E

2k

|G(P )|dL(P ) ≤
∑
l∈N

ˆ
Tk,l

|G(P )|1∆E
2k

(P )dL(P )
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≤ ‖G1∆E
2k
‖S
∑
l∈N

µ(Tk,l) ≤ 2k+1µ(∆E2k)

Thus

+∞∑
k=−∞

ˆ
∆E

2k

|G(P )|dL(P ) . ‖G‖L1(X,µ,S).

The term
´

X\E0
|G(P )|dL(P ) vanishes because we may represent X =

⋃
i∈N Ti. Using (2.45) and

the monotonicity of sizes we have

ˆ
X\E0

|G(P )|dL(P ) ≤
∑
i∈N

ˆ
Ti

|G(P )|1X\E0
(P )dL(P )

.
∑
i∈N

‖G1X\E0
‖S(Ti) µ(Ti) = 0.

The term
´
E+∞

|G(P )|dL(P ) also vanishes since

µ(E2k) ≤
∞∑
l=k

µ(E′2k) . 2−k‖G‖L1(S)

and thus µ(E+∞) = 0 and L(E+∞) = 0 by (2.46). This concludes the proof.

The proof of the following outer measure Hölder inequality can be found in [DT15].

Proposition 2.7 (Outer Hölder inequality). Let (X, µ) be an outer measure space endowed with
three sizes ‖ · ‖S, ‖ · ‖S′ , and ‖ · ‖S′′ such that for any Borel functions F and A on X the product
estimate for sizes

‖FA‖S . ‖F‖S′‖A‖S′′ (2.48)

holds. Then for any Borel functions F and A on X the following outer Hölder inequality holds:

‖FA‖Lp(S) ≤ 2‖F‖Lp′ (S′)‖A‖Lp′′ (S′′) (2.49)

for any triple p, p′, p′′ ∈ (0, ∞] of exponents such that 1
p′ + 1

p′′ = 1
p ,

The above two statement can be easily extended to iterated outer measure spaces. Suppose
from now on that X is endowed with two outer measures ν and µ, the former generated by a
pre-measure (ν,D) as described in (2.33). Given a size ‖ · ‖S we introduce local -Lq(S) sizes as
described by (2.39) and the corresponding iterated outer Lp-Lq(S) quasi-norms as described in
(2.40).

Corollary 2.8 (Outer Hölder inequality for iterated outer measure spaces). Let (X, µ) be an
outer measure space endowed with three sizes ‖ · ‖S, ‖ · ‖S′ , and ‖ · ‖S′′ satisfying the assumptions
of Proposition 2.7. Then given any two triples pairs of exponents p, p′, p′′ ∈ (0, ∞] and q, q′, q′′ ∈
(0,∞] such that 1

p′ + 1
p′′ = 1

p and 1
q′ + 1

q′′ = 1
q the iterated Hölder bounds

‖FA‖Lp-Lq(S) . ‖F‖Lp′-Lq′ (S′)‖A‖Lp′′-Lq′′ (S′′) (2.50)

hold for any Borel functions F and A on X.
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As a matter of fact the inequality

‖FA‖-Lq(S) . ‖F‖-Lq′ (S′)‖A‖-Lq′′ (S′′) (2.51)

holds for localized -Lq(S) sizes satisfy the inequality by Proposition 2.7 applied to the defining
expression (2.39). Thus the local -Lq(S) sizes themselves satisfy the conditions of Hölder inequality
and the statement of the above Corollary follows.
The Radon-Nikodym Lemma 2.6 can also be generalized to iterated outer measure Lp spaces.

Corollary 2.9 (Iterated Radon-Nikodym domination). Consider (X, µ) an outer measure space
with a size ‖ · ‖S and a Borel measure L that satisfy the conditions of Lemma 2.6 and let ν be a
measure generated by (ν,D). Suppose that D also satisfies the covering condition of Lemma 2.6.
Then the iterated Radon-Nikodym domination∣∣∣ ˆ

X
G(P )dL(P )

∣∣∣ . ‖G(P )‖L1-L1(S)

holds.

As a matter of fact for any Borel function G the inequality

ˆ
D

|G(P )|L(P ) . ‖G‖-L1(S)(D)ν(D)

follows from (2.39) and Lemma 2.6. Thus the outer measure space (X, ν) and the family of local
sizes ‖ · ‖-L1(S)(D) satisfy the conditions of Lemma 2.6 and the statement of the Corollary follows.
Using the above properties one can deduce inequality (2.9): introduce the size

‖G‖S1 := sup
T∈T
‖G‖S1(T ) = sup

T∈T

‖G1T ‖L1

µ(T )

so that the sizes ‖ · ‖S1 , ‖ · ‖Se , and ‖ · ‖Sm satisfy the product estimate (2.48). It follows from
the iterated Hölder inequality (2.49)that

‖FA‖L1-L1(S1) . ‖F‖Lp-Lq(Se)‖A‖Lp′ -Lq′ (Sm)

for conjugate exponents 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Furthermore we may apply 2.9 to (X, ν)

with the local size ‖ · ‖-L1(S1) so (2.9) follows.

Interpolation

Here we recall some interpolation properties of outer measure Lp spaces from [DT15] and extend
them to iterated outer measure Lp spaces.
The proof of the following Propositions can be found in [DT15].

Proposition 2.10 (Logarithmic convexity of Lp norms). Let (X, µ) be an outer measure space
with size ‖ · ‖S and let G be a Borel function on X. For every θ ∈ (0, 1) and for 1

pθ
= 1−θ

p0
+ θ

p1

with p0, p1 ∈ (0,∞], p0 6= p1 the inequality

‖G‖Lpθ (S) ≤ Cθ,p0,p1‖G‖1−θLp0,∞(S)‖G‖
θ
Lp1,∞(S)

holds.



2.2. Outer measures on the time-frequency space 51

The following straight-forward remarks are useful to be able to compare outer measure spaces
with differing sizes.

Remark 2.11 (Monotonicity of outer Lp spaces). Consider an outer measure space (X, µ) with
two sizes ‖ · ‖S and ‖ · ‖S′ . Suppose that given two Borel functions G and G′ on X we have that

‖G1X\E‖S . ‖G′1X\E‖S′

for any E =
⋃
n∈N Tn that is countable union of generating sets Tn ∈ T. Then

‖G‖Lp(S) . ‖G‖Lp(S′)

for all p ∈ (0,∞] and for iterated spaces

‖G‖Lp-Lq(S) . ‖G′‖LpLq(S′)

for all p, q ∈ (0,∞]. Similar statements hold for weak spaces.

Remark 2.12 (Interpolation of sizes). Given an outer measure space (X, µ) with two sizes ‖ · ‖S
and ‖ · ‖S′ , define the sum size as ‖ · ‖S+S′ := ‖ · ‖S + ‖ · ‖S′ . Then the following inequality holds
for any Borel function G and for any p ∈ (0,∞]

‖G‖Lp(S+S′) ≤ 2
(
‖G‖Lp(S) + ‖G‖Lp(S′)

)
.

The proofs of the above remarks consists of simply applying the definition of outer measure Lp

quasi-norms and as such are left to the reader.
As a consequence of the above properties, given a function G the following inequality holds:

‖G‖Lp-Lq(S) ≤ Cq,q0,q1
(
‖G‖Lp-Lq0,∞(S) + ‖G‖Lp-Lq1,∞(S)

)
for all q0, q1 ∈ (1,∞] and q ∈ (q0, q1).
Finally we state a version of the Marcinkiewicz interpolation for maps into outer measure Lp

spaces

Proposition 2.13 (Marcinkiewicz interpolation). Let (Y,L) be a classical measure space, (X, µ)
be an outer measure space with size ‖ · ‖S and assume 1 ≤ p0 < p1 ≤ ∞. Let T an operator that
maps Lp0(Y,L) + Lp1(Y,L) to Borel function on X so that

Scaling |T (λf)| = |λT (f)| for all f ∈ Lp0 (Y,L) + Lp1 (Y,L) and λ ∈ R;

Quasi sub-additivity
|T (f + g)| ≤ C (|T (f)|+ |T (g)|) for all f, g ∈ Lp0 (Y,L) + Lp1 (Y,L);

Boundedness
‖T (f)‖Lp0,∞(S) ≤ C1 ‖f‖Lp0 (Y,L) ∀f ∈ Lp0 (Y,L)

‖T (g)‖Lp1,∞(S) ≤ C2 ‖g‖Lp1 (Y,L) ∀g ∈ Lp1 (Y,L) .

Then for all f ∈ Lp0 (Y,L) ∩ Lp1 (Y,L) we have

‖T (f)‖Lpθ (S) .θ,p0,p1 C
1−θ
1 Cθ2‖f‖Lpθ (Y,L)

with θ ∈ [0, 1] and 1
pθ

= 1−θ
p0

+ θ
p1

.
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2.3 Wave packet decomposition

The main object of this section is to show inequality (2.13) i.e. the domination of the linearized
variational Carleson operator via embedding maps. The following procedure follows the general
scheme for obtaining (2.8) (2.3).

Lemma 2.14. Consider any fixed parameters d > b > 0, 0 < d′ < d − 2b, d′′ > d + 2b, and a
small enough ε > 0 appearing in properties (2.16), (2.17), and (2.18). There exists a choice of

truncated left and right wave packets Ψ
c−,c+,l
0,η,t and Ψ

c−,c+,r
0,η,t such that for all c− < c+ ∈ R∪{+∞}

the expansion

1(c−,c+)(ξ) =

¨
R×R+

(
Ψ̂
c−,c+,l
0,η,t (ξ) + Ψ̂

c−,c+,r
0,η,t (ξ)

)
dηdt (2.52)

holds where the integral converges in locally uniformly for ξ in (c−, c+).

Proof. Let ϕ ∈ S(R) and χ ∈ C∞c (R) be two non-negative functions such that for ε > 0 small
enough, to be determined later the following holds

spt ϕ̂ ⊂ Bb sptχ ⊂ Bε(d) ⊂ (b,+∞)

¨
R×R+

ϕ̂(t̃− η̃)χ(η̃)dη̃
dt̃

t̃
. (2.53)

A change of variable η̃ = tη and t̃ = t
|ξ| , gives:

1(0,+∞)(ξ) =

¨
R×R+

ϕ̂η,t(ξ)χ(tη)dηdt with ϕη,t(z) := eiηzt−1ϕ
(z
t

)
. (2.54)

Let γ ∈ C∞c ([0, 1 + ε)) so that

γ(t) = 1 for t ∈
[
0, (1 + ε)−1

]
γ(t) + θ(1/t) = 1 for t ∈ R+.

Such a function can be constructed by taking γ̃ to satisfy the first two conditions and by setting

γ(t) := γ̃(t)
γ̃(t)+γ̃(1/t) . Let us then set

β(ξ) :=

¨
R×R+

γ(t′)ϕ̂η′,t′(ξ)χ(t′η′)dη′dt′ so that (2.55)

β(tξ) =

¨
R×R+

γ(t′/t)ϕ̂η′,t′(ξ)χ(t′η′)dη′dt′.

Using (2.54) one obtains

1(c−,c+)(ξ) =

˘
(R×R+)2

ϕ̂η,t(ξ)χ(t(η − c−))ϕ̂η′,t′(ξ)χ(t′(c+ − η′))dη′dt′dηdt,

so the representation (2.52) holds with

Ψ̂
c−,c+,l
0,η,t (ξ) := χ(t(η − c−)) ϕ̂η,t(ξ)β(t(c+ − ξ)) (2.56)

Ψ̂
c−,c+,r
0,η,t (ξ) := χ(t(c+ − η)) ϕ̂η,t(ξ)β(t(ξ − c−)).

It remains to check that Ψ
c−,c+,l
0,η,t are left truncated wave packets. By symmetry it will follow

that Ψ
c−,c+,r
0,η,t is a right truncated wave packet. First of all (2.16) holds according to (2.56) since

spt ϕ̂η,t(ξ) ⊂ Bbt−1(η).
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Notice that

sptβ ⊂
(d− ε− b

1 + ε
,+∞

)
β(ξ) = 1 on

(
(d+ ε+ b)(1 + ε),+∞

)
. (2.57)

As a matter of fact the integrand in (2.55) is non-zero only if t′(ξ − η′) ∈ Bb and t′η′ ∈ Bε(d) so
t′ξ ∈ Bε+b(d). This shows that

ξ ≤ d− ε− b
1 + ε

=⇒ t′ > 1 + ε or t′ < 0 =⇒ γ(t′) = 0 =⇒ β(ξ) = 0

ξ ≥ (d+ ε+ b)(1 + ε) =⇒ t′ < (1 + ε)−1 =⇒ γ(t′) = 1 =⇒ β(ξ) = 1

where the last equality follows from (2.54).

We now check that (2.17) holds. It follows from (2.56) that Ψ
c−,c+,l
y,η,t (ξ) vanishes unless χ(t(η −

c−)) 6= 0 i.e. unless t(η− c−) ∈ Bε(d). Also Ψ
c−,c+,l
y,η,t (ξ) = 0 unless t(ξ− η) > −b and t(c+− ξ) >

d−ε−b
1+ε i.e. unless t(c+ − η) > d−ε−b

1+ε − b As long as 0 < d′ < d − 2b one can choose ε > 0 small
enough for (2.17) to hold.
We now check that (2.18) holds. We have that β(t(c+ − ξ)) = 1 if t(c+ − ξ) > (d+ ε+ b)(1 + ε)
and we know that ϕ̂η,t(ξ) 6= 0 only if t(ξ− η) ∈ Bb thus if t(c+ − η) > (d+ ε+ b)(1 + ε) + b then

Ψ̂
c−,c+,l
0,η,t = χ(t(η − c−)) ϕ̂η,t(ξ) =: Ψ̂

c−,+∞,l
0,η,t

so (2.18) holds as long as d′′ > d+ 2b and ε > 0 is chosen small enough
We now need to check the smoothness conditions (2.15). We must show that the functions

Ψ̂
c−,c+,l
0,η,t

(
ξ + η

t

)
t−1∂c−Ψ̂

c−,c+,r
0,η,t

(
ξ + η

t

)
t−1∂c+Ψ̂

c−,c+,r
0,η,t

(
ξ + η

t

)
are all uniformly bounded in S(R) for all η, t ∈ R× R+ and c− < c+ ∈ R. Clearly

Ψ
c−,c+,l
0,η,t

(ξ + η

t

)
= χ(tη − tc−) ϕ̂η,t

(ξ + η

t

)
β(tc+ − ξ + η)

and the claim follows.

Corollary 2.15. Let us fix a set of parameters d′′, d′, d > 0 with d′′ > max(d′; d) and 3d > d′.
Then for any ε > 0 small enough there exists b > 0 such that there exists a choice of left and right

truncated wave packets Ψ
c−,c+,l
0,η,t and Ψ

c−,c+,r
0,η,t such that (2.52) holds for all c− < c+ ∈ R∪{+∞}.

Proof. If d′′ > d > d′ > 0 then let us choose ε > 0 and b > 0 small enough so that the conditions

for Lemma 2.14 hold. Then the Lemma provides us with wave packets Ψ
c−,c+,l
0,η,t and Ψ

c−,c+,r
0,η,t

such that (2.52) holds as required.

Suppose now that 3d > d′ ≥ d and d′′ > d′ and consider the set of parameters d̃′′, d̃′, d̃, b̃, ε̃ > 0
given by

ε̃ = ε b̃ = b− δ d̃ = d+ δ d̃′ = d′ − δ d̃′′ = d′′ − δ

for some d > δ > 0. We need to check that the above parameters satisfy the assumptions of

Lemma 2.14 that will give us the left and right truncated wave-packets Ψ̃
c−,c+,l
0,η,t and Ψ̃

c−,c+,r
0,η,t for

which (2.16), (2.17), and (2.18) hold with these modified parameters As long as 2δ + b̃ < d̃− ε̃,
setting Ψ

c−c+,l
0,η,t := Ψ̃

c−,c+,l

0,η+δt−1,t and Ψ
c−c+,r
0,η,t := Ψ̃

c−,c+,r

0,η−δt−1,t will provide us with the required wave-

packets so that (2.52) holds.



54 2. Variational Carleson embeddings into the upper 3-space

Set b = d′−d
2(1−3ε) and δ = (1 − ε)b so that b̃ = εb with ε > 0 small enough for the subsequent

inequalities to hold. All the abovementioned conditions hold since

d̃− ε− b̃− 2δ = d+ δ − ε− b+ δ − 2δ = d− ε− b = d− ε− d′ − d
2(1− 3ε)

> 0

b̃ = εb > 0

d̃− b̃ = d− b+ 2δ > 0

d̃′ > d′ − δ = d′ − 1− ε
2

d′ − d
1− 3ε

> 0

d̃− 2b̃− d̃′ = d− d′ − 2b+ 4δ = d− d′ + 2(1− 2ε)b = (d′ − d)

(
1− 2ε

1− 3ε
− 1

)
> 0

d̃′′ − d̃− 2b̃ = d′′ − d− 2b > d′′ − d′ + (d′ − d)

(
1− 1

1− 3ε

)
> 0.

This concludes the proof.

As a consequence we obtain the following representation Lemma.

Lemma 2.16. Let us fix a set of parameters d′′, d′, d > 0 with d′′ > max(d′; d) and 3d > d′. For
any ε > 0 small enough there exists b > 0 such that for any f ∈ S(R) and c− < c+ ∈ R ∪ {+∞}
the expansion ˆ c+

c−

f̂(ξ)eiξxdξ =

˚
X
f ∗ ψη,t(y)

(
Ψ
c−,c+,l
y,η,t (z) + Ψ

c−,c+,r
y,η,t (z)

)
dydηdt (2.58)

holds. Here Ψ
c−,c+,l
y,η,t and Ψ

c−,c+,l
y,η,t are some left and right truncated wave packets for which

properties (2.15), (2.16), (2.17), and (2.18) hold with the parameters above. The function ψη,t
is obtained from some ψ ∈ S(R) as in (2.4); we also have

spt ψ̂ ∈ B(1+ε)b with(1 + ε)b < d− ε.

Proof. Let us choose ψ ∈ S(R) such that spt ψ̂ ∈ B(1+ε)b and ψ̂ = 1 on Bb so that

Ψ̂
c−,c+,l
0,η,t (ξ) = ψ̂η,t(ξ)Ψ̂

c−,c+,l
0,η,t (ξ) Ψ̂

c−,c+,r
0,η,t (ξ) = ψ̂η,t(ξ)Ψ̂

c−,c+,r
0,η,t (ξ)

and let us set Ψ
c−,c+,l
y,η,t (z) = Ψ

c−,c+,l
0,η,t (z − y) and Ψ

c−,c+,r
y,η,t (z) = Ψ

c−,c+,r
0,η,t (z − y). It follows that

˚
X
f ∗ ψη,t(y)

(
Ψ
c−,c+,l
y,η,t (z) + Ψ

c−,c+,r
y,η,t (z)

)
dydηdt

=

¨
R×R+

f ∗ ψη,t(y) ∗
(

Ψ
c−,c+,l
0,η,t + Ψ

c−,c+,r
0,η,t

)
(z)dηdt

= F−1

(¨
R×R

f̂(ξ)ψ̂η,t(ξ)
(

Ψ̂
c−,c+,l
0,η,t (ξ) + Ψ̂

c−,c+,r
0,η,t (ξ)

))
= F−1

(
f̂(ξ)1c−,c+(ξ)

)
as required, where F−1 is the inverse Fourier transform.

As a corollary of the above Lemma we have the following pointwise wave-packet representation
for the linearized variational Carleson operator:∑

k∈Z

ak(z)

ˆ ck+1(z)

ck(z)

f̂(ξ)eiξzdξ
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=
∑
k∈Z

˚
X
f ∗ ψη,t(y)

(
Ψ

ck(z),ck+1(z),l
y,η,t (z) + Ψ

ck(z),ck+1(z),r
y,η,t (z)

)
ak(z)dηdydt.

Setting

Ac(y, η, t) :=

ˆ
R

∑
k∈Z

(
Ψ

ck(z),ck+1(z),l
y,η,t (z) + Ψ

ck(z),ck+1(z),r
y,η,t (z)

)
ak(z)dz

gives (2.22). We also remark that if c and a are as in (2.21) then the above construction reduces
to the one described by (2.3), (2.6) and (2.7) thus showing (2.23).
Finally notice that if we fix Θ = (α−, α+) = (−1, 1) and set d < 1 < d′ < d′′ with d′ < 3d,
then for every ε > 0 small enough we may apply Lemma 2.16 to obtain the parameter b > 0

and wave-packets Ψ
c−,c+,l
y,η,t (z), Ψ

c−,c+,l
y,η,t (z), and ψη,t. Supposing that ε > 0 is small enough so

that d + ε < α+ = 1 we can find (1 + ε)b < β+ < d − ε and set Θ(i) = (β−, β+) = (−β+, β+).
Thus there exists a set of parameters α− < β− < β+ < α+ such that (2.13) holds and (2.29) is
satisfied so that Theorem 2.3 and Theorem 2.2 hold.

2.4 The auxiliary embedding map

In this section we introduce an auxiliary embedding map used to control the embedded function
A. The bounds with the same exponents as in (2.19) hold for the auxiliary embedded function M
with S∞ in lieu of Sm. However it is technically easier to control the super-level outer measure
µ (‖M‖S∞ > λ) of the auxiliary embedded function M. A crucial covering Lemma implies non-
iterated outer Lp

′
space bounds for M while a locality property and a projection Lemma allows

for the extention to iterated outer Lp
′
-Lq spaces.

The auxiliary embedding map associates to a ∈ C∞c (lr
′
) the function on X given by

M(y, η, t) :=

ˆ
R

(∑
k∈Z

|ak(z)|r
′
1Θ (t (η − ck(z)))

)1/r′

Wt(z − y)dz (2.59)

where the bump function W is as in (2.24).

Proposition 2.17 (Bounds on the auxiliary embedding map M). For any r′ ∈ [1,∞], p′ ∈ (1,∞],
and q′ ∈ (r′,∞] and for any function a ∈ Lp′(lr′) the function M defined by (2.59) satisfies the
bounds

‖M‖Lp′-Lq′ (S∞) . ‖a‖Lp′ (lr′ ) (2.60)

where S∞(M) := sup(y,η,t)∈X M(y, η, t). Furthermore the weak endpoint bounds

‖M‖Lp′-Lr′,∞(S∞) . ‖a‖Lp′ (lr′ ) p′ ∈ (1, ∞] (2.61)

‖M‖L1,∞-Lq′ (S∞) . ‖a‖L1(lq′ ) q′ ∈ (r′,∞]

‖M‖L1,∞-Lr′,∞(S∞) . ‖a‖L1(lr′ ).

hold. All the above inequalities hold as long as N > 0 in (2.24) is large enough and with constants
independent of the stopping sequence c appearing in (2.59).

We may make two reductions to prove the above bounds. First of all one can substitute Wt(z)
by a normalized characteristic function of a ball. As a matter of fact set

MR(y, η, t) :=

 
BRt(y)

(∑
k∈Z

|ak(z)|r
′
1Θ

(
t(η − ck(z))

))1/r′

dz
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so that M(y, η, t) .
∑
n∈N R

−Nn MRn(y, η, t). Thus it is sufficient to prove that the bounds (2.60)

hold for MR with a constant that grows at most as RN
′

for some N ′ > 0 as R→∞. The bounds
for M follow by quasi-subadditivity as remarked in Section 2.2.1 as long as N > N ′. For the
second reduction split Θ = Θ+ ∪Θ− into Θ+ := Θ ∩ [0,+∞] and Θ− := Θ ∩ [−∞, 0]. Set

M±R(y, η, t) :=

 
BRt(y)

(∑
k∈Z

|ak(z)|r
′
1Θ±

(
t(η − ck(z))

))1/r′

dz (2.62)

so that MR ≤ M+
R + M−R. Thus it will suffice to provide the proof of the bounds (2.60) only for

M+
R

We begin by introducing the concept of disjoint tents relative to the embedding (2.62) and record
an important covering lemma.

Definition 2.18 (Q+-disjointness). Let Q > 0. We say two tents T (x, ξ, s) and T (x′, ξ′, s′) are
Q+-disjoint if either

BQs(x) ∩BQs′(x′) = ∅ or {c : s(ξ − c) ∈ Θ+} ∩ {c : s′(ξ′ − c) ∈ Θ+} = ∅.

Notice that if a sequence of tents T (xl, ξl, sl)l∈N are pairwise Q+-disjoint, with Q ≥ R, then for
every z ∈ R ∣∣∣∣∣∑

l∈N

1Θ+

(
sl(ξl − ck(z))

)
1BR

(
xl − z
sl

)∣∣∣∣∣ ≤ 1

and the bound∑
l∈N

sl M
+
R(xl, ξl, sl)

r′ ≤
∑
l∈N

sl

 
BRsl (xl)

∑
k∈Z

|ak(z)|r
′
1Θ±

(
t(ξl − ck(z))

)
dz (2.63)

≤ (2R)−1

ˆ
R
‖a(z)‖r

′

lr′
dz = (2R)−1‖a‖r

′

Lr′ (lr′ )

holds.
What follows is a covering lemma. We remark that this is the only instance where we require
smoothness and rapid decay assumptions on a.

Lemma 2.19. Let a ∈ C∞c (lr
′
). If Q > R > R0 for some R0 > 0 depending on Θ the super

level set

Eλ,R :=
{

(x, ξ, s) : M+
R(x, ξ, s) ≥ λ

}
admits a finite covering

⋃L
l=1 3Q2 Tl ⊃ Eλ,R with tents Q+-disjoint tents Tl = T (xl, ξl, sl) cen-

tered at points (xl, ξl, sl) ∈ Eλ,R.

Proof. Introduce the relation / between points of X such that (x, ξ, s) / (x′, ξ′, s′) if BQs(x) ∩
BQs′(x

′) 6= ∅, s(ξ − ξ′) ∈ Θ and s′ > Qs. We say (x, ξ, s) is maximal in a set P ⊂ X if there is
no (x′, ξ′, s′) ∈ P such that (x, ξ, s) / (x′, ξ′, s′). Notice that Eλ,R is (x, t)-bounded in the sense
that for some C > 1 large enough

Eλ,R ⊂ BC(0)× R× (0, C)

holds. As a matter of fact M+
R(y, η, t) . (Rt)−1‖a‖L1(lr′ ) and M+

R(y, η, t) = 0 if dist(y; spt a) > tR

so if (y, η, t) ∈ Eλ,R then t < C and |y| < C for some C > 0 depending on a. Thus any non-empty
subset P ⊂ Eλ,R admits a maximal element.
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Inductively construct a covering starting with an empty collection of tents T 0 = ∅. At the lth

step consider the points in the set

Eλ,R \
⋃

T∈T l−1

3Q2 T (2.64)

and select from it a point (xl, ξl, sl) that is maximal with respect to the relation / and set
and T l = T l−1 ∪ {T (xl, ξl, sl)}. We claim that at each step of the algorithm all the selected
tent T (xl, ξl, sl) are pairwise Q+-disjoint. Reasoning by contradiction, suppose that two tents
T (xl, ξl, sl) and T (xl′ , ξl′ , sl′) with l < l′ are not Q+-disjoint, then BQsl(xl)∩BQsl′ (xl′) 6= ∅ and
there also exists a c ∈ R such that sl(ξl−c) ∈ Θ+ and sl′(ξl′−c) ∈ Θ+. Recall that Θ+ = [0, α+]
so

ξl − s−1
l α+ ≤ c ≤ ξl ξl′ − s−1

l′ α
+ ≤ c ≤ ξl′

If sl′ ≥ Qsl one would have

−s−1
l Q−1α+ ≤ −s−1

l′ α
+ ≤ ξl − ξl′ ≤ s−1

l α+

and thus sl(ξl−ξl′) ∈ Θ as long as α− ≤ −R−1
0 α+. This contradicts the maximality of (xl, ξl, sl)

that was chosen before (xl′ , ξl′ , sl′). On the other hand if sl′ < Qsl then

−s−1
l α+ ≤ ξl′ − ξl ≤ s−1

l′ α
+

and, as long as Q ≥ R0 ≥ α+, this implies that (xl′ , ξl′ , sl′) ∈ 3Q2T (xl, ξl, sl) contradicting the
selection condition.
Finally notice that the selection algorithm terminates after finitely many steps since at every
step (2.63) holds having chosen Q ≥ R, since sl are bounded from below since M+

R(xl, ξl, sl) ≥ λ.

Thus Eλ ⊂
⋃L
l=1 3Q2Tl.

A consequence of the above Lemma are non-iterated bounds for M+
R.

Proposition 2.20. Given a ∈ Lp′(lr′) with p′ ∈ (r′,∞] the bound

‖M+
R‖Lp′ (S∞) .R ‖a‖Lp′ (lr′ ) (2.65)

holds. Furthermore the weak endpoint bound

‖M+
R‖Lr′,∞(S∞) .R ‖a‖Lr′ (lr′ ) (2.66)

holds. All the above bounds hold with a constant that grows at most polynomially in R as R→∞
and is independent of the stopping sequence c appearing in (2.62).

The bound (2.65) for p =∞ is straightforward:

M+
R(y, η, t) =

 
BtR(y)

(∑
k∈Z

|ak(z)|r
′
1Θ+

(
t(η − ck(z))

))1/r′

dz

≤
ˆ

R

∑
k∈Z

|ak(z)|r
′
t−11BR

(
z − y
t

)
dz . ‖a‖r

′

L∞(lr′ )
.

It is sufficient to show bound (2.66) so that will (2.65) follow for p ∈ (r′,∞) by interpolation
2.13. In particular to obtain (2.66) we will show that given λ > 0 the bound on the measure of
the super-level set

µ(Eλ,R) .R λ
−r′‖a‖r

′

Lr′ (lr′ )
(2.67)
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holds. It is sufficient to consider the covering provided by Lemma 2.19 with Q = R. Since
(xl, ξl, sl) ∈ Eλ,R and the covering T = T L = {T (xl, ξl, sl)}l∈L consists of Q+-disjoint tents, the
bound (2.63) gives

λr
′
L∑
l=1

sl ≤ (2R)−1‖a‖r
′

Lr′ (lr′ )
.

Since Eλ,R ⊂
⋃L
l=1 3R3T (xl, ξl, sl) one deduces

µ(Eλ,R) .R

L∑
l=1

µ
(
T (ξl, xl, sl)

)
≤

L∑
l=1

sl ≤
‖a‖r′

Lr′ (lr′ )

λr′

where the implied constant grows polynomially in R as required.
The proof of 2.17 relies on a locality property and a strip projection lemma.

Lemma 2.21 (Locality of M+
R). Consider a strip D = D(x, s) and a function a ∈ L1

loc(l
r′) with

dist
(

spt a;Bs(x)
)
> Rs

then for all (y, η, t) ∈ D(x, s) we have

M+
R 1D(x,s) = 0.

Proof. The statement follows directly from the definition (2.62) of the embedding. As a matter
of fact if (y, η, t) ∈ Dx,s then BtR(y) ⊂ BsR(y) and BsR(y) ∩ spt a = ∅.

Lemma 2.22 (Mass projection for M+
R). Fix any collection of pairwise disjoint strips D(ζm, τm),

m ∈ {1, . . . ,M} and any finite collection of Q+-disjoint tents

T (xl, ξl, sl) 6⊂
M⋃
m=1

D(ζm, 3τm), l ∈ {1, . . . , L}

with Q > 2R > 2. Given a function a ∈ L1
loc(l

r′) and a stopping sequence c there exists a function

ã ∈ L1
loc(l

r′) and a new stopping sequence c̃ such that

‖ã(z)‖lr′ .
 
Bτm (ζm)

‖a(z)‖lr′dz ∀z ∈ Bτm(ζm) ∀m ∈ {1, . . . ,M} (2.68)

ãk(z) = ak(z) ∀z /∈
M⋃
m=1

Bτm(ζm)

and

M̃+
2R(xl, ξl, sl) ≥ M+

R(xl, ξl, sl) ∀l ∈ {1, . . . , L}. (2.69)

where M̃+
2R is the embedded function as given by expression (2.62) associated to ã with the stopping

sequence c̃ .

Proof. Let us order the tents T (xl, ξl, sl) so that ξl ≤ ξl′ if l < l′ . For every strip D(ζm, τm) let

Lm :=
{
l ∈ {1, . . . , L} : D(xl, Rsl) ∩D(ζm, τm) 6= ∅

}
.
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Set

ãk(z) =



ak(z) if z /∈
⋃
m

Bτm(ζm)

 
Bτm (ζm)

(∑
j∈Z

|aj(z)|r
′
1Θ+

(
sl(ξk − cj(z))

))1/r′

dz
if z ∈ Bτm(ζm)

and k ∈ Lm

0
if z ∈ Bτm(ζm)

and k /∈ Lm

c̃k(z) =



ck(z) if z /∈
⋃
m

Bτm(ζm)

ξk if z ∈ Bτm(ζm) and k ∈ {1, . . . , L}
ξ1 k < 1

ξL k > L.

The expressions above are well defined since D(ζm, τm) are pairwise disjoint.
The bound (2.68) follows by the Minkowski inequality. For z ∈ Bτm(ζm) one has

‖ã(z)‖lr′ =

(∑
k∈Z

(  
Bτm (ζm)

(∑
j∈Z

|aj(z)|r
′
1Θ+

(
sl(ξk − cj(z))

))1/r′

dz

)r′)1/r′

.
 
Bτm (ζm)

( ∑
k∈Lm

∑
j∈Z

|aj(z)|r
′
1Θ+

(
sl(ξk − cj(z))

))1/r′

dz ≤
 
Bτm (ζm)

‖a(z)‖lr′ ,

where the last inequality holds since the tents T (xl, ξl, sl) are Q+-disjoint.
It remains to show (2.69). Since T (xl, ξl, sl) 6⊂ D(ζm, 3τm) for any m we have that

BRsl(xl) ∩Bτm(ζm) 6= ∅ =⇒ D(ζm, τm) ⊂ D(xl, 2Rsl)

so set

Ml =
{
m : D(ζm, τm) ⊂ D(xl, 2Rsl)

}
.

Using the definitions of ã and c̃ we obtain

M̃+
2R(xl, ξl, sl) =

 
B2Rsl

(xl)

(∑
k∈Z

|ãk(z)|r
′
1Θ+

(
sl(ξl − c̃k(z))

))1/r′

dz

& (4Rsl)
−1

ˆ
BRsl (xl)\

⋃
mBτm (ζm)

(∑
k∈Z

|ak(z)|r
′
1Θ+

(
sl(ξl − ck(z))

))1/r′

dz

+ (4Rsl)
−1

∑
m∈Ml

ˆ
Bτm (ζm)

( ∑
k∈Lm

|ãk(z)|r
′
1Θ+

(
sl(ξl − ξk)

))1/r′

dz.

Using the fact that T (xl, ξl, sl) are Q+-disjoint with Q > 2R we obtain that sl(ξl − ξk) ∈ Θ+,
z ∈ Bτm(ζm), and ãk(z) 6= 0 only if k = l; thus∑

m∈Ml

ˆ
Bτm (ζm)

( ∑
k∈Lm

|ãk(z)|r
′
1Θ+

(
sl(ξl − ξk)

))1/r′

dz =
∑
m∈Ml

ˆ
Bτm (ζm)

ãl(z)dz

=
∑
m∈Ml

ˆ
Bτm (ζm)

(∑
j∈Z

|aj(z)|r
′
1Θ+

(
sl(ξl − cj(z))

))1/r′

dz.
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This allows us to conclude that

M̃+
2R(xl, ξl, sl) &

 
BRsl (xl)

(∑
k∈Z

|ak(z)|r
′
1Θ+

(
sl(ξl − ck(z))

))1/r′

dz = M+
R(xl, ξl, sl).

We now have all the tools to prove (2.60) for M+
R. We proceed by interpolation, as described in

2.2.1, between the four (weak) endpoints

(p′, q′) ∈ {(∞,∞), (∞, r′), (1,∞), (1, r′)} .

Proof of bounds (2.60) for M+
R.

The bound for (p′, q′) = (∞,∞) follows directly from (2.65) with p′ =∞.
The bound for (p′, q′) = (∞, r′) follows from the locality property 2.21. We must show that for
any strip D(x, s) one has

‖M+
R1D(x,s)‖r

′

Lr′,∞(S∞)
.R ν(D(x, s))‖a‖r

′

L∞(lr′ )

but due to locality and (2.66) we have that

‖M+
R1D(x,s)‖r

′

Lr′,∞(S∞)
.R ‖a1B2sR(x)‖r

′

Lr′ (lr′ )
≤R s‖a‖r

′

L∞(lr′ )

as required.
The bound for (p′, q′) = (1,∞) makes use of the Mass Projection Lemma 2.22. We need to show
that for every ω > 0 there exists Kω ⊂ X such that

ν (Kω) .R ω
−1‖a‖L1(lr′ )

∥∥M+
R 1X\Kω 1D(x,s)

∥∥
L∞(S∞)

. ω.

for any strip D(x, s). Let Kω = {z ∈ R : M(‖a‖lr′ )(z) > ω} where M is the Hardy-Littlewood
Maximal function (2.25). The set Kτ is open and in particular is a finite union of intervals

Kω =
⋃M
m=1Bτm(ζm). Let

Kω :=

M⋃
m=1

D(ζm, 9τm) =⇒ ν(Kω) .
M∑
m=1

2τm = |Kω| . ω−1‖a‖L1(lr′ )

by the weak L1 bound on the Hardy-Littlewood maximal function.
For any tent T (y, η, t) 6⊂ D(ζm, 3τm) apply Lemma 2.22 with respect to the the strips(
D(ζm, 3τm)

)
m∈{1,...,M} and the one tent T (ξ, x, s). By construction we obtain a function ã such

that ‖ã‖L∞(lr′ ) . ω. Using the statement of the Lemma and bound (2.65) we have

M+
R(y, η, t) ≤ M̃+

2R(y, η, t) .R ‖ã‖L∞(lr′ ) . ω

as required.
The proof of the case (p′, q′) = (1, r′) goes along the same lines. Let us suppose, without loss of
generality, that a ∈ C∞c (lr

′
)We need to show that for every ω > 0 there exists Kω ⊂ X such that

ν (Kω) .R ω
−1‖a‖L1(lr′ )

∥∥M+
R 1X\Kω 1D(x,s)

∥∥r′
Lr′,∞(S∞)

. ν
(
D(x, s)

)
ωr
′
.

Choose Kω =
⋃M
m=1D(ζm, 9τm) as before. Let λ > 0 and set

Eλ,R = Eλ,R ∩ (D(x, s) \Kω) Eλ,R =
{

(y, η, t) : M+
R > λ

}
.
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The Covering Lemma 2.19 can be applied to Eλ,R with Q > 2R sufficiently large yielding a

covering
(
T (xl, ξl, sl)

)
l∈{1,...,L} such that

⋃L
l=1 3Q3T (xl, ξl, sl) ⊃ Eλ,R with the tents T (xl, ξl, sl)

that are pairwise Q+-disjoint. Now apply the Mass Projection Lemma 2.22 with respect to
the strips

(
D(ζm, 3σm)

)
m∈{1,...,M} and the tents T (ξl, xl, sl)l∈{1,...,L}. The resulting ã satisfies

‖ã‖L∞(lr′ ) . ω while

M̃+
2R(xl, ξl, sl) ≥ M+

R(xl, ξl, sl) ≥ λ.

Using the bound (2.63) and the locality property 2.21 we have that

µ
(
Eλ,R

)
.R

L∑
l=1

sl . λ−r
′
‖ã1B2sR(x)(z)‖r

′

Lr′ (lr′ )
. s ωr

′
λ−r

′
.

This concludes the proof.

2.5 Proof of Theorem 2.3

In the previous section the bounds (2.60) were shown to hold for the auxiliary embedding M. To
prove Theorem 2.3 it is sufficient to show that the values of M control ‖ · ‖Sm . More specifically
we require the following result.

Proposition 2.23. Given any union of strips K and a union of tents E such that

M(y, η, t) ≤ λ ∀(y, η, t) ∈ X \ (K ∪ E) (2.70)

the bound ‖A 1X\(K∪E)‖Sm . λ holds.

Assuming that the above statement holds, Theorem 2.3 follows by the monotonicity property of
outer Lp sizes 2.11.

The above proposition follows from showing that the required bound holds for all local sizes:
‖A1X\(K∪E)‖Sm(T ) . λ. The proof is divided into two parts relative to showing L1-type bounds

over T (i) and L(2) type bounds over T (e) (see (2.42)).

The former part uses crucial disjointness properties related to the conditions (2.17) on the trun-
cated wave packets.

The latter part depends on the fact that the sizes over a single tent T resembles an L2 estimate
for variational truncation of the Hilbert transform or of a square function in the spirit of [JSW08].
We will elaborate on this variational estimate in Lemma 2.24 in the following part on technical
preliminaries.

The proof also involves a crucial stopping time argument. Similarly to the rest of the paper we
avoid discretization and formulate a continuous version of this argument that we isolate Lemma
2.27 below.

2.5.1 Technical preliminaries

The following variational truncation bounds are a slightly modified version of the results appear-
ing in [JSW08].
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Lemma 2.24 (Variational truncations of singular integral operators [JSW08]). For any function
H ∈ Lp(R) and σ ∈ [0,∞) let us define the variational truncation operator

VrσH(z) = sup
σ<t1<···<tk<...

(∑
k

|H ∗Υtk+1
(z)−H ∗Υtk(z)|r

)1/r

(2.71)

where

Υ ∈ S(R),

ˆ
R

Υ(z)dz = 1 and Υt(z) := t−1Υ
(z
t

)
.

If r > 2 and for any p ∈ (1,∞), above operator satisfies the bounds

‖VrσH‖Lp .r,p ‖H‖Lp (2.72)

and if σ > 0 then

VrσH(z) .r,p

 
Bσ(z)

M (VrσH) (z′)dz′ (2.73)

where M is the Hardy-Littlewood maximal function. The implicit constants are allowed to depend
on Υ.

We record some useful properties of so called convex regions of tents.

Definition 2.25 (Convex regions). A convex region of a tent is a subset Ω ⊂ T (x, ξ, s) of a tent
of the form

Ω :=
⋃
θ∈Θ

Ωθ :=
{

(y, ξ + θt−1, t) ∈ T (x, ξ, s) : t > σθ(y)
}
. (2.74)

for some function σθ(y) : Θ×Bs(x)→ [0, s].

Given any tent T ∈ T, any collection of strips D, and any collection of tents T , the set

Ω = T \

( ⋃
D∈D

D ∪
⋃
T∈T

T

)
⊂ T

is a convex region of the tent T . With the next lemma we show that the bound (2.70) on a
convex regions can be extended to larger regions with scale bound σ that is Lipschitz in the
space variable.

Lemma 2.26 (Lipschitz convex regions). Let T (x, ξ, s) ∈ T be a tent and Ω =
⋃
θ∈Θ Ωθ ⊂

T (x, ξ, s) be a convex region as defined in (2.74) and let us fix a constant L > 2. For every θ ∈ Θ
such that the bound

M(y, η, t) ≤ λ ∀(y, η, t) ∈ Ωθ

holds for Ωθ =
{

(y, ξ + θt−1, t) ∈ T (x, ξ, s) : t > σθ(y)
}
6= ∅

there exists a Lipschitz function σ̃θ : R→ R+ with Lipschitz constant L−1 < 1/2 such that

min
(
2s; L−1 dist(y;Bs(x))

)
≤ σ̃θ(y) ≤ 2s ∀y ∈ R (2.75)

σ̃θ(y) ≤ σθ(y) ∀y ∈ Bs(x) (2.76)

and

sWs(x− y)M(y, ξ + θt−1, t) .L λ ∀y ∈ R, t ∈ (σ̃θ(y), 3s). (2.77)
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Proof. Fix θ ∈ Θ such that Ωθ is non-empty and let us drop the dependence on θ from the
notation by simply writing σ(y) in place of σθ(y). Let us set

σ̃(y) := min
(
2s; ˜̃σ(y)

)
with ˜̃σ(y) := inf

y′∈Bs(x)
max

(
σ(y′);

|y − y′|
L

)
(2.78)

Clearly, this defines a function on R such that conditions (2.75) and (2.76) hold. The defined

function is L−1-Lipschitz. It is sufficient to show that ˜̃σ is L−1-Lipschitz: for any y ∈ R and
ε > 0 there exits y′ ∈ Bs(x) such that

˜̃σ(y) ≥ (1 + ε)−1 max

(
σ(y′);

|y − y′|
L

)
and thus for any y′′ ∈ R one has

˜̃σ(y′′) ≤ max
(
σ(y′);

|y′′ − y′|
L

)
≤ max

(
σ(y′);

|y − y′|
L

)
+
|y′′ − y|

L

≤ (1 + ε)˜̃σ(y) +
|y′′ − y|

L
.

Since ε > 0 was arbitrary and one can invert the role of y′′ and y in the above reasoning we

obtain that |˜̃σ(y′′)− ˜̃σ(y)| ≤ |y
′′−y|
L as required.

Let us now check that (2.77) holds. Suppose that y ∈ R and t ∈ (σ̃(y), 3s]. Let us distinguish the
cases t ∈ (σ̃(y), 2s) and t ∈ [2s, 3s). In the first case there exists y′ ∈ Bs(x) and t′ ∈ (σθ(y

′), s)
such that t′ ∈ (t/2, t) and |y − y′| < 2Lt and thus it follows that |x− y| < 2Ls. It follows that

Wt(z − y) .L Wt(z − y′) .Wt′(z − y′) ∀z ∈ R

thus sWs(x− y)Wt(z − y) .L Wt′(z − y′) ∀z ∈ R

In the case that t ∈ [2s, 3s] there also exists y′ ∈ Bs(x) and t′ ∈ (σθ(y
′), s) such that t′ ∈ (t/2, t)

since Ωθ 6= ∅. It follows from (2.78) that |y′ − y| > 2Ls so |x− y| ≈L |y′ − y| so for all z ∈ R

sWs(x− y)Wt(z − y) .L sWs(y
′ − y)Ws(z − y) .Wt′(z − y′).

Thus, since in both cases (y′, ξ + θt′−1, t′) ∈ Ω we have by the definition (2.59) of M that

sWs(x− y)M(y, ξ + θt−1, t) .L M(y′, ξ + θt′−1, t) ≤ λ

as required.

The next technical lemma will be used as a continuous stopping time argument. It relates
the Lipschitz assumption on enlarged convex regions of the previous statement with a crucial
measurability estimate.

Lemma 2.27 (Continuous stopping time). Let σ : R→ R+ be a Lipschitz function with Lipschitz
constant L−1 < 1. Then the function

ρσ(z) :=

ˆ
R

1

2σ(x)
1Bσ(x)(z − x)dx

satisfies
(

1 + 2
L−1

)−1

< ρσ(z) < 1 + 2
L−1 and in particular for any non-negative function h(z) the

bounds ˆ
R
h(z)dz ≈L

ˆ
R

 
Bσ(x)(x)

h(z)dz dx.

hold.
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Proof. Since σ is L−1-Lipschitz, for any z ∈ R we have that

B(1+L−1)−1σ(z)(z) ⊆ {x : z ∈ Bσ(x)(x)} ⊆ B(1−L−1)−1σ(z)(z).

By the same reason on {x : z ∈ Bσ(x)(x)} we have that(
1 + L−1

)−1
σ(z) ≤ σ(x) ≤

(
1− L−1

)−1
σ(z).

The conclusion follows.

2.5.2 Proof of Proposition 2.23

Let T = T (x, ξ, s) be a tent and suppose that K and E are as in 2.23. Since the statement of
Proposition 2.23 is invariant under time and frequency translations, we may assume, without
loss of generality, that T is centered at the origin i.e. T = T (0, 0, s). If T \ (K ∪E) = ∅ there is
nothing to prove. Let us set

Θ∗ = {θ ∈ Θ: ∃(y, θt−1, t) ∈ T (0, 0, s) \ (K ∪ E)},

Θ
(i)
∗ := Θ(i) ∩Θ∗ Θ

(e)
∗ := Θ(e) ∩Θ∗.

For θ ∈ Θ∗, using Lemma 2.26 we may assume that there exists a L−1-Lipschitz function σθ :
R → (0, 2s], with L > 4 sufficiently large to be chosen later, that satisfies condition (2.75) such
that

sWs(y)M(y, θt−1, t) . λ ∀y ∈ R, θ ∈ Θ, t ∈ (σ(y), 3s). (2.79)

Let us set Ω =
⋃
θ∈Θ Ωθ, Ω(i) =

⋃
θ∈Θ(i) Ωθ, and Ω(e) =

⋃
θ∈Θ(e) Ωθ with

Ωθ =

{
{(y, θt−1, t) ∈ T (0, 0, s) : t > σθ(y)} θ ∈ Θ∗

∅ otherwise.

We need to show that

‖A 1X\(K∪E)‖Sm(T ) ≤ ‖A 1Ω‖Sm(T ) . λ ∀T ∈ T

or equivalently (see (2.42)) that

‖A 1Ω(i)‖S1(T (i)) . λ ‖A 1Ω‖S2(T ) . λ.

In this proof all our implicit constants depend on the choice of L.
Let us fix a choice of left truncated wave packets Ψ

c−,c+
y,η,t (z) in the defining expression (2.14). We

will show that the statement holds in this case. The proof for right truncated wave packets is
simmetric.
Comparing the definitions (2.14) and (2.59) for A and M respectively, it follows from the bound∣∣∣Ψck(z),ck+1(z)

y,η,t (z)
∣∣∣ ≤Wt(z − y) that

A(y, η, t) . M(y, η, t), ‖A 1Ω‖S∞(T ) := sup
(y,η,t)∈Ω

A(y, η, t) . λ. (2.80)

This implies

1

s

˚
(y,η,t)∈Ω
η<0

|A(y, η, t)|2 . λ
1

s

˚
(y,η,t)∈Ω
η<0

|A(y, η, t)|dydηdt (2.81)

and thus we may assume that α− = β− < 0 < β+ < α+ and we can reduce to showing

‖A 1Ω(i)‖S1(T (i)) . λ ‖A 1Ω(e)‖S2(T (e)) . λ. (2.82)
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Proof of the first inequality of (2.82)

It holds that

‖A 1Ω(i)‖S1(T (i)) ≈
˚

Ω(i)

∣∣∣∣∣
ˆ

R

∑
k∈Z

ak(z)Ψ
ck(z),ck+1(z)
y,η,t (z)dz

∣∣∣∣∣ dydηdt

≤ 1

s

ˆ
θ∈Θ

(i)
∗

ˆ
y∈Bs

ˆ s

t=σθ(y)

ˆ
z∈R

∑
k∈Z

|ak(z)|
∣∣∣Ψck(z),ck+1(z)

y,θt−1,t (z)
∣∣∣dzdt

t
dydθ.

According to (2.17) The wave-packet Ψ
ck(z),ck+1(z)

y,θt−1,t (z) vanishes unless θ − tck(z) ∈ Bε(d) and

tck+1(z)−θ > d′. Since θ ∈ Θ(i) ⊂ [−d′, d−ε], the integrand vanishes unless ck(z) < 0 < ck+1(z).
Let k∗z ∈ Z be the index, if it exists, such that this inequality holds and set a∗(z) := ak∗z (z),
c∗(z) = ck∗(z)(z). If no such index exists simply set a∗(z) = 0.
Using that given t < s and y ∈ Bs one has∣∣∣Ψck(z),ck+1(z)

y,θt−1,t (z)
∣∣∣ . sWs(z) tWt(z − y)2 ≤Wt(z − y)

and using the statement of Lemma 2.27 we have that

‖A 1Ω(i)‖S1(T (i)) .
1

s

ˆ
θ∈Θ

(i)
∗

ˆ
y∈Bs

ˆ s

t=σθ(y)

ˆ
x∈R

 
z∈Bσθ(x)(x)

|a∗(z)|sWs(z) tWt(y − z)2

× 1Bε(d)(θ − tc∗(z))dz dx
dt

t
dydθ = I + II

where

I :=
1

s

ˆ
θ∈Θ

(i)
∗

ˆ
x∈R

 
z∈Bσθ(x)(x)

|a∗(z)|
ˆ s

t=(1−2/L)σθ(x)

ˆ
y∈Bs

Wt(y − z)dy

× 1Bε(d)(θ − tc∗(z))
dt

t
dzdxdθ

II :=
1

s

ˆ
θ∈Θ

(i)
∗

ˆ
x∈R

ˆ
y∈Bs

ˆ (1−2/L)σθ(x)

t=σθ(y)

 
z∈Bσθ(x)(x)

|a∗(z)| sWs(z) tWt(y − z)2

× 1Bε(d)(θ − tc∗(z))dz
dt

t
dydxdθ

Suppose that L > 2 α+−α−
α+−d−ε so that for any c ∈ R one has{

θ − tc ∈ Bε(d)

t > (1− 2/L)σθ(x)
=⇒ θ − σθ(x)c ∈ Θ. (2.83)

We begin by estimating the term I. Notice that if |x| > 2Ls then integrand vanishes. We bound
I by the auxiliary embedding map (2.59) as follows:

I .
1

s

ˆ
θ∈Θ

(i)
∗

ˆ
x∈R

 
z∈Bσθ(x)(x)

|a∗(z)|
ˆ s

t=(1−2/L)σθ(x)

1Bε(d)(θ − tc∗(z))
dt

t
dzdxdθ

.
1

s

ˆ
θ∈Θ

(i)
∗

ˆ
x∈B2Ls

 
Bσθ(x)(x)

|a∗(z)|1Θ∗ (θ − σθ(x)ck(z)) ln

(
β+ − θ + 3ε

β+ − θ

)
dzdx dθ
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≤1

s

ˆ
θ∈Θ

(i)
∗

ˆ
x∈B2Ls

M(x, θσθ(x)−1, σθ(x))dx ln

(
β+ − θ + 3ε

β+ − θ

)
dθ . λ.

The last inequality holds since (x, θσθ(x)−1, σθ(x)) ∈ Ωθ and follows from (2.79).
We now estimate the term II. Notice that

(1− 2/L)σθ(x) > σθ(y) =⇒ |x− y| ≥ L(σθ(x)− σθ(y)) > 2σθ(x) (2.84)

Thus if z ∈ Bσθ(x)(x) then |y − z| > σθ(x) > t, |x− y| ≈ |y − z|, and also sWs(z) . sWs(x) so

II .
ˆ
θ∈Θ

(i)
∗

ˆ
x∈R
Ws(x)

ˆ
y∈Bs

ˆ (1−2/L)σθ(x)

t=σθ(y)

tWt(y − x)

×
 
Bσθ(x)(x)

|a∗(z)|Wt(y − z) 1Bε(d)(θ − tc∗(z))dz
dt

t
dydxdθ

.
ˆ
θ∈Θ

(i)
∗

ˆ
x∈R
Ws(x)

ˆ
y∈Bs

ˆ (1−2/L)σθ(x)

t=σθ(y)

t

2σθ(x)
Wt(y − x)M(y, θt−1, t)

dt

t
dydxdθ.

Since the inmost integral vanishes unless |y − x| > 2σθ(x), we have that

ˆ (1−2/L)σθ(x)

t=σθ(y)

t

2σθ(x)
Wt(y − x)

dt

t
.Wσθ(x)(y − x)

and so using (2.79) we obtain

II .λ
ˆ
θ∈Θ

(i)
∗

ˆ
x∈R

Ws(x)

ˆ
y∈Bs

Wσθ(x)(y − x)dydxdθ

.λ
ˆ
θ∈Θ

(i)
∗

ˆ
x∈R

Ws(x) dx dθ . λ.

This concludes the proof for the first bound of (2.82).

Proof of the second inequality of (2.82)

As noted in (2.81) we may suppose that Θ(e) = [β+, α+); for ease of notation set Ω(e) = Ω∩T (e)

so the required quantity to bound becomes ‖A 1Ω(e)‖S2(T (e)). We concentrate on showing the
dual bound

1

s

∣∣∣∣∣
˚

X
h(y, η, t)

ˆ
R

∑
k∈Z

ak(z)Ψ
ck(z),ck+1(z)
y,η,t (z)dz dydηdt

∣∣∣∣∣ . λ
‖h(y, η, t)‖L2

s1/2
(2.85)

for any h ∈ C∞c (Ω(e)) where the ‖ · ‖L2 is the classical Lebesgue L2 norm relative to the measure
dydηdt. A change of variables and the Minkowski inequality give

1

s

∣∣∣∣∣
˚

X
h(y, η, t)

ˆ
R

∑
k∈Z

ak(z)Ψ
ck(z),ck+1(z)
y,η,t (z)dz dydηdt

∣∣∣∣∣
≤ 1

s

ˆ
R

∑
k∈Z

|ak(z)|
∣∣∣∣˚

Ω(e)

h(y, η, t)Ψ
ck(z),ck+1(z)
y,η,t (z)dydηdt

∣∣∣∣dz
≤ 1

s

ˆ
θ∈Θ

(e)
∗

ˆ
R

∑
k∈Z

|ak(z)|

∣∣∣∣∣
ˆ
y∈Bs

ˆ s

t=σθ(y)

h(y, t−1θ, t)Ψ
ck(z),ck+1(z)

y,θt−1,t (z)dy
dt

t

∣∣∣∣∣dzdθ.



2.5. Proof of Theorem 2.3 67

On the other hand the Hölder inequality gives that

ˆ
θ∈Θ

(e)
∗

‖h(y, t−1θ, t)‖L2
(dydt/t)

dθ =

ˆ
θ∈Θ

(e)
∗

(ˆ
y∈Bs

ˆ s

t=σθ(y)

|h(y, t−1θ, t)|2dy
dt

t

) 1
2

dθ

. ‖h(y, η, t)‖L2

where ‖·‖L2
(dydt/t)

is the classic Lebesgue L2 norm with respect to the measure dy dt
t . Thus (2.85)

follows by showing

1

s

ˆ
R

∑
k∈Z

|ak(z)|

∣∣∣∣∣
ˆ
y∈Bs

ˆ s

t=σθ(y)

h(y, t−1θ, t)Ψ
ck(z),ck+1(z)

y,t−1θ,t (z)dy
dt

t

∣∣∣∣∣dz (2.86)

. λ

∥∥h(y, t−1θ, t)
∥∥
L2

(dydt/t)

s1/2

with a constant uniform in θ ∈ Θ
(e)
∗ . For sake of notation from now on we will omit the

dependence on θ by writing

h(y, t) := h(y, t−1θ, t) Ψ
c−,c+
y,t (z) := Ψ

c−,c+
y,t−1θ,t(z) σ(x) := σθ(x).

Using the above notation and Lemma
2.27 we write

1

s

ˆ
R

∑
k∈Z

|ak(z)|

∣∣∣∣∣
ˆ
y∈Bs

ˆ s

t=σ(y)

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣∣∣dz . I + II

where

I : =
1

s

ˆ
x∈B2Ls

 
z∈Bσ(x)(x)

∑
k∈Z

|ak(z)|

∣∣∣∣∣
ˆ
y∈Bs

sˆ

t=(1−2/L)σ(x)

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣∣∣dzdx
II : =

1

s

ˆ
x∈R

 
z∈Bσ(x)(x)

∑
k∈Z

|ak(z)|

∣∣∣∣∣
ˆ
y∈Bs

(1−2/L)σ(x)ˆ

t=σ(y)

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣∣∣dzdx
We start with bounding I. Suppose that L > 1 is chosen large enough so that (2.83) holds and

recall that Ψ
ck(z),ck+1(z)
y,t (z) = 0 unless θ − tck(z) ∈ Bε(d). We thus have

I =
1

s

ˆ
x∈B2Ls

 
z∈Bσ(x)(x)

∑
k∈Z

|ak(z)|
∣∣∣∣ˆ
y∈Bs

sˆ

t=(1− 2
L )σ(x)

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣∣dzdx
≤1

s

ˆ
x∈B2Ls

 
Bσ(x)(x)

(∑
k∈Z

|ak(z)|r
′
1Θ

(
θ − σ(x)ck(z)

))1/r′

Hx(z)dz dx

≤1

s

ˆ
x∈B2Ls

M(x, θσ(x)−1, σ(x)) sup
z∈Bσ(x)(x)

Hx(z)dx ≤ λ

s

ˆ
x∈B2Ls

sup
z∈Bσ(x)(x)

Hx(z)dx,

where

Hx(z) :=

(∑
k∈Z

∣∣∣∣ˆ
y∈Bs

sˆ

t=(1− 2
L )σ(x)

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣∣r)1/r

.
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We claim that

Hx(z) . Vrσ(x)Hs(z) + Eσ(x)(z) Hτ (z) :=

ˆ τ

t=0

ˆ
y∈Bs

h(y, t)Ψ0,+∞
y,t (z)dy

dt

t
(2.87)

Eσ(x)(z) :=

(ˆ s

(1−2/L)σ(x)

|h∗(z, t)|2 dt

t

)1/2

h∗(z, t) :=

ˆ
R
|h(y, t)|Wt(z − y)dy

with Vrσ(x) defined in Lemma 2.24, and that

‖E0‖L2 . ‖h‖L2
(dydt/t)

sup
z∈Bσ(x)(x)

Eσ(x)(z) .
 
B2σ(x)(z)

E0(z)dz (2.88)

‖Hs‖L2 . ‖h‖L2
(dydt/t)

sup
z∈Bσ(x)(x)

Hx(z)dx .
 
B2σ(x)(x)

MVrHs(z)dz. (2.89)

This would provide us with the required bounds for I. As a matter of fact, according to Lemma
2.27 and 2.24 we have that

I .
λ

s

ˆ

x∈B2Ls

 

B2σ(x)(x)

(
MVrHs(z) + Eσ(x)(z)

)
dz .R

λ

s1/2

(
‖MVrHs‖L2 + ‖E0(z)‖L2

)

.
λ

s1/2

(
‖Hs(z)‖L2 + ‖E0(z)‖L2

)
. λ
‖h‖L2

(dydt/t)

s1/2

as required.
The first bound of (2.88) follows by the Young inequality and Fubini:

‖E0‖L2 ≤
¨

R×R+

∣∣∣ ˆ
R
|h(y, t)|Wt(z − y)dy

∣∣∣2dz
dt

t

≤
ˆ

R+

ˆ
R
|h(y, t)|2dy

(ˆ
Wt(z − y)dy

)2 dt

t
. ‖h‖2L2

(dydt/t)
.

The second bound follows from the fact that for small enough ε > 0 and as long as |z − z′| < εt
the bound

|h∗(z, t)− h∗(z′, t)| ≤
ˆ

R
|h(y, t)||Wt(z − y)−Wt(z

′ − y)|dy

≤ 2−100

ˆ
R
|h(y, t)|Wt(z − y)dy = 2−100h∗(z, t)

holds so similarly ∣∣∣Eσ(x)(z)− Eσ(x)(z
′)
∣∣∣ ≤ 2−100Eσ(x)(z)

as long as |z − z′| < εσ(x) for some sufficiently small ε > 0.

 
Bσ(x)(z)

E0(z′)dz′ &
 
Bσ(x)(z)

Eσ(x)(z
′)dz′ &ε

 
Bεσ(x)(z)

Eσ(x)(z)dz
′ = Eσ(x)(z)

and the claim follows.
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The first bound of (2.89) uses standard oscillatory integral techniques: notice that for t > t′ one
has ∣∣∣ ˆ

R
Ψy,t(z)Ψy′,t′(z)dz

∣∣∣ . t′

t
Wt(y − y′)

so
ˆ
|Hs(z)|2(z) . 2

ˆ s

t=0

ˆ t

t′=0

ˆ
y∈Bs

ˆ
y′∈Bs
|h(y, t)||h(y′, t′)|Wt(y − y′)dydy′

t′

t

dt

t

dt′

t′

. ‖h‖2L2
(dydt/t)

.

The second bound follows directly from Lemma 2.24.
It remains to show inequality (2.87). Notice that

Hx(z) =

(∑
k∈Z

∣∣∣ ˆ t+k (z)

t−k (z)

ˆ
y∈Bs

h(y, t)Ψ
ck(z),ck+1(z)
y,t (z)dy

dt

t

∣∣∣r)1/r

where for k ∈ Z we set

t+k (z) := sup
{
t ∈
(
(1− 2/L)σ(x), s

)
: Ψ

ck(z),ck+1(z)
y,t (z) 6= 0

}
(2.90)

t−k (z) := inf
{
t ∈
(
(1− 2/L)σ(x), s

)
: Ψ

ck(z),ck+1(z)
y,t (z) 6= 0

}
.

We have omitted writing the implicit dependence on x ∈ R and we will simply ignore the indexes
k ∈ Z for which the above sets are empty. Notice that the intervals

[
t−k (z), t+k (z)

)
are disjoint.

According to the conditions (2.17) on the geometry of truncated wave packets the following
bounds hold:

t+k (z)ck(z) ∈ Bε(θ − d) t−k (z)ck+1(z) ≥ θ + d′. (2.91)

Using the smoothness conditions (2.15) on the wave packets and writing a Lagrange remainder
term we have that∣∣∣Ψck(z),ck+1(z)

y,t (z)−Ψ0,+∞
y,t (z)

∣∣∣ ≤ (|tck(z)|+ max (d′′ − θ − tck+1(z); 0)
)
Wt(y − z) (2.92)

so the bound

Hx(z) ≤ Hx,1(z) +Hx,2(z)

Hx,1(z) :=
(∑
k∈Z

∣∣∣ ˆ
y∈Bs

ˆ t+k (z)

t=t−k (z)

h(y, t)Ψ0,+∞
y,t (z)dy

dt

t

∣∣∣r)1/r

=
(∑
k∈Z

|Ht+k (z)(z)−Ht−k (z)(z)|
r
)1/r

Hx,2(z) :=
(∑
k∈Z

∣∣∣ ˆ t+k (z)

t−k (z)

h∗(z, t)
(
|tck(z)|+ max(d′′ − θ − tck+1(z), 0)

)dt

t

∣∣∣r)1/r

holds. Notice that

ˆ t+k (z)

t−k (z)

t2|ck(z)|2 dt

t
≤
|t+k (z)ck(z)|2

2
≤ Cα+
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ˆ t+k (z)

t−k (z)

max
(
d′′ − θ − tck+1(z); 0

)dt

t
≤
ˆ d′′−θ

t−k ck+1(z)

dt

t
≤
ˆ d′′−θ

d′+θ

dt

t
. Cd′,d,α+,β+

for some constant Cα+ and Cd′,d,α+,β+. Since r > 2, Cauchy-Schwartz gives

Hx,2(z) ≤

(∑
k∈Z

ˆ t+k (z)

t−k (z)

h∗(z, t)2 dt

t

) 1
2

. Eσ(x)(z).

This is consistent with (2.87). To estimate Hx,1: introduce a frequency cutoff Υ ∈ S(R) such
that

Υ̂ ∈ C∞c (Bθ+b) Υ̂ ≥ 0 Υ̂ = 1 on Bθ Υτ (z) := τ−1Υ
( z
τ

)
.

According to (2.16), Ψ̂0,+∞
y,t is supported on Bt−1b(t

−1θ) so one has the following

Ψ0,+∞
y,t ∗Υτ (z) = Ψ0,+∞

y,t (z) if
t

τ
≥ θ + b

θ

Ψ0,+∞
y,t ∗Υτ (z) = 0 if

t

τ
<
θ − b
θ + b∣∣Ψ0,+∞

y,t ∗Υτ (z)
∣∣ .Wt(z − y) if

θ − b
θ + b

≤ t

τ
<
θ + b

θ
.

Thus ∣∣∣Hτ −Hs ∗Υτ (z)
∣∣∣ . ˆ τ θ+bθ

τ θ−bθ+b

h∗(z, t)
dt

t

so

Hx,1(z) .
(∑
k∈Z

|Hs ∗Υt+k (z) −Hs ∗Υt−k (z)|
r
) 1
r

+
(∑
k∈Z

∣∣∣ˆ t−k (z) θ+bθ

t−k (z) θ−bθ+b

h∗(z, t)
dt

t

∣∣∣r) 1
r

+
(∑
k∈Z

∣∣∣ ˆ t+k (z) θ+bθ

t+k (z) θ−bθ+b

h∗(z, t)
dt

t

∣∣∣r) 1
r

. Vrσ(x)Hs(z) + Eσ(x)(z)

thus concluding the proof of (2.87) and the bound on the term I.
The estimate for the term II can be done in a manner similar to the term II in for the S1 part of
the size. Recall (2.84) so that in expression for II one has that z ∈ Bσ(x)(x), |y− z| > σ(x) > t,
and |x− y| ≈ |y − z|. We also have that y ∈ Bs so

Ψ
ck(z),ck+1(z)
y,t (z) . sWs(x) tWt(z − y)2

and Ψ
ck(z),ck+1(z)
y,t (z) = 0 unless tck(z) < θ < tck+1(z), thus

II .
1

s

ˆ
x∈R

sWs(x)

ˆ
y∈Bs

ˆ (1−2/L)σ(x)

t=σ(y)

tWt(y − x)h(y, t)

 
Bσ(x)(x)

∑
k∈Z

|ak(z)|

× 1Θ(θ − tck(z))Wt(z − y)1(ck(z),ck+1(z))(t
−1θ)dz

dt

t
dydx

.
ˆ
x∈R

Ws(x)

ˆ
y∈Bs

ˆ (1x−2/L)σ(x)

t=σ(y)

t

2σ(x)
Wt(y − x)h(y, t)
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×
ˆ
Bσ(x)(x)

(∑
k∈Z

|ak(z)|r
′
1Θ(θ − tck(z))

)1/r′

Wt(y − z) dz
dt

t
dydx

.
ˆ
x∈R

Ws(x)

ˆ
y∈Bs

ˆ (1x−2/L)σ(x)

t=σ(y)

t

2σ(x)
Wt(y − x)h(y, t)M(y, θt−1, t)

dt

t
dydx

Since the inmost integral vanishes unless |y − x| > 2σθ(x), we have that

(ˆ (1−2/L)σθ(x)

t=σθ(y)

∣∣ t

2σ(x)
Wt(y − x)

∣∣2 dt

t

)1/2

.Wσ(x)(y − x)

it follows that

II .λ
ˆ
x∈R

Ws(x)

ˆ
y∈Bs

Wσ(x)(y − x)
(ˆ s

t=0

|h(y, t)|2 dt

t

)1/2

dydx

.λ
ˆ
x∈R

Ws(x)M

((ˆ s

t=0

|h(·, t)|2 dt

t

)1/2
)

(x)dx

.
λ‖h‖L2

(dydt/t)

s1/2

This concludes the proof.

2.6 The energy embedding and non-iterated bounds

2.6.1 The energy embedding

Here we comment on how to deduce Theorem 2.2 from the result in [DPO15]. Let us fix a p ∈
(1,∞] and q ∈

(
max(2; p′),+∞

]
and without loss of generality let us suppose that f̂ ∈ C∞c (R).

We will show that the weak versions of (2.11) holds i.e.

‖F‖Lp,∞-Lq(Se) . ‖f‖Lp . (2.93)

By interpolation this would allow us to conclude the strong bounds of (2.11).
The paper [DPO15] deals with embeddings into the space X that they denote by Z. The gener-
ating collection of tents that they make use of is described in Section 2.1.2 of that paper. Notice
that the set of geometric parameters for the tents in the present paper (Section 2.2) is larger than
the one in [DPO15] but a careful perusal of the proofs therein shows that the same statements
hold for the extended range of parameters.
Let us recall the main statements from [DPO15].

Theorem 2.28 (Theorem 1 of [DPO15]). Let f ∈ S(R) with f̂ ∈ C∞c . Let p ∈ (1, 2) and consider
the set If,λ,p of maximal dyadic intervals contained in

Kf,λ,p = {x ∈ R : Mpf(x) > λ} and let Kf,λ,p :=
⋃

Bτ (ζ)∈If,λ,p

D(ζ, 3τ). (2.94)

Then with q ∈ (p′,∞].

‖F1X\Kf,λ,p‖Lq(Se) .q,p λ
1−p/q‖f‖p/qLp .
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We used the super level set of Mpf instead of the super level set of Mp

(
Mf

)
to define Kf,λ,p.

As mentioned in section 7.3.1 of [DPO15], the inner maximal function appears only in the

reduction from the case with f̂ compactly supported to the case with a general f ∈ S(R). By
our assumptions we can effectively ignore this complication.

Proposition 2.29 (Proposition 3.2 + equations (2.6) and (2.7) of [DPO15]). The estimate

‖F 1D(x,s)‖Lq(Se) .N,q
(

1 +
dist(spt f ;Bs(x)

s

)−N
‖f‖Lq

holds for all N > 0 and q ∈ (2,∞].

Lemma 2.30 (Equation (7.3) of [DPO15]). The estimate

‖F 1D(x,s)‖L∞(Se) .N

(
1 +

dist
(

spt f ;Bs(x)
)

s

)−N
inf

z∈Bs(x)
Mf(z)

holds for any N > 0.

Corollary 2.31. Suppose that spt f ∩B2s(x) = ∅ then

‖F1D(x,s)‖Lq(Se)s
−1/q .N,p

(
1 +

dist
(

spt f ;Bs(x)
)

s

)−N
s−1/p‖f‖Lp

for all p ∈ [1, 2), q > p′, and N > 0.

Proof. If spt f∩B2s(x) = ∅ then infz∈Bs(x)Mf(z) . s−1‖f‖L1 . Using this fact and interpolating
between the bounds from Proposition 2.29 and Lemma 2.30 we obtain the required inequality.

Fix p ∈ (1,∞] and q ∈
(

max(p′; 2),∞
]

and let p ∈
(
1,min(p; 2)

)
such that q > p′. We will now

show that

‖F1X\Kf,λ,p‖-Lq(Se) . λ. (2.95)

Since ν(Kf,λ,p) . λ−p‖f‖pLp this would prove (2.93).
Let us consider a strip D(x, s) ∈ D and suppose that D(x, s) 6⊂ Kf,λ,p, otherwise the estimate is
trivial. We have B5s(x) 6⊂ Kf,λ,p. For an N > 1 large enough to be chosen later let us set

f(x) = f0(x) +

∞∑
k=1

fk(x) = f(x)υ
(x− x0

5s

)
+

∞∑
k=1

f(x)γ

(
x− x0

5s2Nk

)
where γ(·) = υ(·/2N )− υ(·) with

υ ∈ C∞c (B2) υ ≥ 0 υ = 1 on B1.

Let Fk be associated to fk via the embedding (2.6) and let Kfk,λ,p be as in (2.94).
Since Kf0,λ,p ⊂ Kf,λ,p we have that ‖f0‖Lps−1/p . λ and

‖F0 1X\Kf,λ,p 1D(x,s)‖Lq(Se) . λ1−p/q‖f0‖p/qLp
. λs1/q (2.96)

by Theorem 2.28
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Since Kfk,λ,p ⊂ Kf,λ,p 6⊃ B5s(x) one has ‖fk‖Lp . λν(D(x, s))1/p2Nk/p and by Corollary 2.31
we have that

‖Fk 1X\Kf,λ,p 1D(x,s)‖Lq(Se)s
−1/q . 2−2Nk2Nk/pλ . 2−Nkλ. (2.97)

By quasi-subadditivity we can add up (2.96) and (2.97) to obtain

‖F 1X\Kf,λ,p 1D(x,s)‖Lq(Se)
ν(D(x, s))1/q

. λ.

Since D(x, s) is arbitrary this implies (2.95).

2.6.2 Non-iterated bounds

We conclude by explaining that for r ∈ (2,∞] and p ∈ (2, r) and simpler embedding bounds on
the maps f 7→ F and a 7→ A are sufficient to prove boundedness on Lp(R) of the Variational
Carleson Operator (2.2) and thus also (2.1).
Hereafter we work with the non-iterated outer measure space (X, µ). The energy embedding map
satisfies the Lp bounds

‖F‖Lp(Se) . ‖f‖Lp p ∈ (2,∞]. (2.98)

This follows directly from Proposition 2.29 by taking s arbitrarily large.
Similarly, in Proposition 2.20 we have shown that the auxiliary embedding satisfies

‖M‖Lp′ (Sm) . ‖a‖Lp′ (lr′ ) p′ ∈ (r′,∞]. (2.99)

and thus, by Proposition 2.23 we have that the variational mass embedding also satisfies such
bounds:

‖A‖Lp′ (Sm) . ‖a‖Lp′ (lr′ ) p′ ∈ (r′,∞]. (2.100)

It follows by the outer Hölder inequality 2.7 that∣∣∣˚
X
F (y, η, t)A(y, η, t)dydηdt

∣∣∣ . ‖F‖Lp(Se)‖A‖Lp′ (Sm).

Using (2.98) and (2.100) and the wave-packet domination (2.13) it follows that (2.2) is bounded
on Lp(R).
In conclusion we remark that the iterated outer-measure Lp spaces that were introduced provide
an effective way of capturing the spatial locality property of the embedding maps. Both the proof
of Theorem 2.3 and of Theorem 2.2 rely on first obtaining non-iterated bounds (see Propositions
2.20 and 2.29) and then using a locality lemma (see Lemmata 2.21 and 2.30 ) and a projection
lemma (see Lemma 2.22 and Lemma 7.8 of [DPO15]) to bootstrap the full result.



74



Chapter 3

Positive sparse domination of
variational Carleson operators

Life, as we know it, is based on L2.

–F.D.P.

This Chapter contains the paper [DPDU16] Due to its nonlocal nature, the r-variation norm Car-
leson operator Cr does not yield to the sparse domination techniques of Lerner [Ler16; Ler13],
Di Plinio and Lerner [DPL14], Lacey [Lac17]. We overcome this difficulty and prove that the
dual form to Cr can be dominated by a positive sparse form involving Lp averages. Our result
strengthens the Lp-estimates by Oberlin et. al. [OSTTW12]. As a corollary, we obtain quanti-
tative weighted norm inequalities improving on [DL12a] by Do and Lacey. Our proof relies on
the localized outer Lp-embeddings of Di Plinio and Ou [DPO15] and Uraltsev [Ura16].

3.1 Introduction and main results

The technique of controlling Calderón-Zygmund singular integrals, which are a-priori non-local,
by localized positive sparse operators has recently emerged as a leading trend in Euclidean Har-
monic Analysis. We briefly review the advancements which are most relevant for the present
article and postpone further references to the body of the introduction. The original domination
in norm result of [Ler13] for Calderón-Zygmund operators has since been upgraded to a pointwise
positive sparse domination by Conde and Rey [CAR16] and Lerner and Nazarov [LN15], and
later by Lacey [Lac17] by means of an inspiring stopping time argument forgoing local mean
oscillation. Lacey’s approach was further clarified in [Ler16], resulting in the following principle:
if T is a sub-linear operator of weak-type (p, p) and in addition the maximal operator

f 7→ sup
Q⊂R interval

∥∥T (f1R\3Q)
∥∥
L∞(Q)

1Q (3.1)

embodying the non-locality of T , is of weak-type (s, s), for some 1 ≤ p ≤ s < ∞, then T is
pointwise dominated by a positive sparse operator involving Ls averages of f .
The principle (3.1) extends to certain modulated singular integrals. Of interest for us is the
maximal partial Fourier transform

Cf(x) = sup
N

∣∣∣∣∣
ˆ N

∞
f̂(ξ) eixξdξ

∣∣∣∣∣
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also known as Carleson’s operator on the real line. The crux of the matter is that (3.1) follows
for T = C from its representation as a maximally modulated Hilbert transform, a fact already
exploited in the classical weighted norm inequalities for C by Hunt and Young [HY74], and in
the more recent work [GMS05]. Together with sharp forms of the Carleson-Hunt theorem near
the endpoint p = 1 [DP14] this allows, as observed by the first author and Lerner in [DPL14],
the domination of C by sparse operators and thus leads to sharp weighted norm inequalities for
C.
In this article we consider the r-variation norm Carleson operator, which is defined for Schwartz
functions on the real line as

Crf(x) = sup
N∈N

sup
ξ0<···<ξN

 N∑
j=1

∣∣∣∣∣
ˆ ξj

ξj−1

f̂(ξ) eixξdξ

∣∣∣∣∣
r
1/r

.

The importance of Cr is revealed by the transference principle, presented in [OSTTW12, Ap-
pendix B], which shows how r-variational convergence of the Fourier series of f ∈ Lp(T;w) for a
weight w on the torus T follows from Lp(R;w)-estimates for the sub-linear operator Cr. Values of
interest for r are 2 < r <∞. Indeed the main result of [OSTTW12] is that in this range, Cr maps
into Lp whenever p > r′, while no Lp-estimates hold for variation exponents r ≤ 2. Unlike the
Carleson operator, its variation norm counterpart Cr does not have an explicit kernel form and
thus fails to yield to Hunt-Young type techniques. The same essential difficulty is encountered in
the search for Lq-bounds for the nonlocal maximal function (3.1) when T = Cr. Therefore, the
approach via (3.1) does not seem to be applicable to Cr. In the series [DL12a; DL12b], the second
author and Lacey circumvented this issue through a direct proof of Ap-weighted inequalities for
Cr and its Walsh analogue, based on weighted phase plane analysis.
The main result of the present article is that a sparse domination principle for Cr holds in spite
of the difficulties described above. More precisely, we sharply dominate the dual form to the
r-variational Carleson operator Cr by a single positive sparse form involving Lp averages, leading
to an effortless strengthening of the weighted theory of [DL12a]. Our argument abandons (3.1) in
favor of a stopping time construction, relying on the localized Carleson embeddings for suitably
modified wave packet transforms of [DPO15] by the first author and Yumeng Ou, and [Ura16] by
the third author. In particular, our technique requires no a-priori weak-type information on the
operator T . A similar approach was employed by Culiuc, Ou and the first author in [CDPO16]
in the proof of a sparse domination principle for the family of modulation invariant multi-linear
multipliers whose paradigm is the bilinear Hilbert transforms. Interestingly, unlike [CDPO16],
our construction of the sparse collection in Section 3.4 seems to be the first in literature which
does not make any use of dyadic grids.
We believe that intrinsic sparse domination can prove useful in the study of other classes of
multi-linear operators lying way beyond the scope of Calderón-Zygmund theory, such as the
iterated Fourier integrals of [DMT17] and the sub-dyadic multipliers of [BB17].
To formulate our main theorem, we recall the notation

〈f〉I,p :=
( 1

|I|

ˆ
|f |p dx

) 1
p

, 1 ≤ p <∞

where I ⊂ R is any interval, and the notion of a sparse collection of intervals. We say that the
countable collection of intervals I ∈ S is η-sparse for some 0 < η ≤ 1 if there exist a choice of
measurable sets {EI : I ∈ S} such that

EI ⊂ I, |EI | ≥ η|I|, EI ∩ EJ = ∅ ∀I, J ∈ S, I 6= J.
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Theorem 3.1. Let 2 < r < ∞ and p > r′. Given f, g ∈ C∞0 (R) there exists a sparse collection
S = S(f, g, p) and an absolute constant K = K(p) such that

|〈Crf, g〉| ≤ K(p)
∑
I∈S
|I|〈f〉I,p〈g〉I,1. (3.2)

A corollary of Theorem 3.1 is that Cr extends to a bounded sub-linear operator on Lq(R) when-
ever q > r′. As a matter of fact, let us fix q ∈ (r′,∞], and choose p ∈ (r′, q). Denoting by

Mpf(x) = sup
I3x
〈f〉I,p

the p-th Hardy-Littlewood maximal function, the estimate of Theorem 3.1 and the fact that S
is sparse yields

|〈Crf, g〉| .
∑
I∈S
|EI |〈f〉I,p〈g〉I,1 ≤ 〈Mpf,M1g〉 . ‖Mpf‖q‖M1g‖q′ . ‖f‖q‖g‖q′ .

Bounds on Lq for Cr were first proved in [OSTTW12], where it is also shown that the restriction
q > r′ is necessary, whence no sparse domination of the type occurring in Theorem 3.1 will hold
for p < r′. We can thus claim that Theorem 3.1 is sharp, short of the endpoint p = r′. In fact,
sparse domination as in (3.2) also entails Cr : Lp(R) → Lp,∞(R). Such an estimate is currently
unknown for p = r′.
However, Theorem 3.1 yields much more precise information than mere Lq-boundedness. In
particular, we obtain precisely quantified weighted norm inequalities for Cr. Recall the definition
of the At constant of a locally integrable nonnegative function w as

[w]At :=

sup
I⊂R
〈w〉I,1

〈
w

1
1−t
〉t−1

I,1
1 < t <∞

inf
{
A : Mw(x) ≤ Aw(x) for a.e. x

}
t = 1

Theorem 3.2. Let 2 < r <∞ and q > r′ be fixed. Then

(i) there exists K : [1, qr′ )→ (0,∞) nondecreasing such that

‖Cr‖Lq(R;w)→Lq(R;w) ≤ K(t)[w]
max{1, t

q(t−1)}
At

;

(ii) there exists a positive increasing function Q such that for t = q
r′

‖Cr‖Lq(R;w)→Lq(R;w) ≤ Q ([w]At) . (3.3)

We omit the standard deduction of Theorem 3.2 from Theorem 3.1, which follows along lines
analogous to the proofs of [CDPO16, Theorem 3] and [LN15, Theorem 17.1]. Estimate (i) of
Theorem 3.2 yields in particular that

w ∈ At =⇒ ‖Cr‖Lq(R;w)→Lq(R;w) <∞ ∀r > max
{

2, q
q−t

}
an improvement over [DL12a, Theorem 1.2], where Lq(R;w) boundedness is only shown for

variation exponents r > max
{

2t, qt
q−t

}
when w ∈ At. Fixing r instead, part (ii) of Theorem 3.2

is sharp in the sense that t = q
r′ is the largest exponent such that an estimate of the type of

(3.3) is allowed to hold. Indeed, if (3.3) were true for any q = q0 ∈ (r′,∞) and some t = q0
s
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with s < r′, a version of the Rubio de Francia extrapolation theorem (see for instance [CUMP11,
Theorem 3.9]) would yield that Cr maps Lq into itself for all q ∈ (s,∞), contradicting the already
mentioned counterexample from [OSTTW12].
We turn to further comments on the proof and on the structure of the paper. In the upcoming
Section 3.2 we reduce the bilinear form estimate (3.2) to an analogous statement for a bilinear
form involving integrals over the upper-three space of symmetry parameters for the Carleson
operator of a wave packet transforms of f and a variational-truncated wave packet transform of
g. The natural framework for Lp-boundedness of such forms, the Lp-theory of outer measures,
has been developed by the second author and Thiele in [DT15]. In Section 3.3, we recall the basics
of this theory as well as the localized Carleson embeddings of [DPO15] and [Ura16]. These will
come to fruition in Section 3.4, where we give the proof of Theorem 3.1. A significant challenge
in the course of the proof is the treatment of the nonlocal (tail) components, which are handled
via novel ad-hoc embedding theorems incorporating the fast decay of the wave packet coefficients
away from the support of the input functions.
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3.2 Reduction to wave packet transforms

In this section we reduce the inequality (3.2) to an analogous statement involving wave packet
transforms. Throughout this section, the variation exponent r ∈ (2,∞) is fixed, and we take
f, g ∈ C∞0 (R). First of all we linearize the variation norm appearing in Cr. Begin by observing
that the map

(x, ξ) 7→
ˆ ξ

−∞
f̂(ζ) eixζdζ

is uniformly continuous. By duality and standard considerations

Crf(x) = sup
N

sup
Ξ⊂R,#Ξ≤N

sup
‖{aj}‖`r′≤1

N∑
j=1

aj

ˆ ξj

ξj−1

f̂(ζ) eixζdζ.

Therefore, (3.2) will be a consequence of the estimate

Λ~ξ,~a(f, g) :=

ˆ
R
g(x)

 N∑
j=1

aj(x)

ˆ ξj(x)

ξj−1(x)

f̂(ζ) eixζ dζ

 dx ≤ K(p)
∑
I∈S
|I|〈f〉I,p〈g〉I,1 (3.4)

with right hand side independent of N ∈ N, Ξ ⊂ R,#Ξ ≤ N , and of the measurable ΞN+1-
valued function ~ξ(x) = {ξj(x)} with ξ0(x) < · · · < ξN (x), and CN+1-valued ~a(x) = {aj(x)} with
‖~a(x)‖`r′ = 1.
The next step is to uniformly dominate the form Λ~ξ,~a(f, g) by an outer form involving wave

packet transforms of f and g; in the terminology of [DT15], embedding maps into the upper
3-space

(u, t, η) ∈ X = R× R+ × R.
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The parameters ξ,~a will enter the definition of the embedding map for g. We introduce the wave
packets

ψt,η(x) := t−1eiηz ψ
(x
t

)
, η ∈ R, t ∈ (0,∞)

where ψ is a real valued, even Schwartz function with frequency support of width b containing
the origin. The wave packet transform of f is thus defined, as in [DT15], by

F (f)(u, t, η) =
∣∣f ∗ ψt,η(u)

∣∣, (u, t, η) ∈ X. (3.5)

For our fixed choice of ~ξ,~a we introduce the modified wave packet transform of g that is dual
to (3.5) for the sake of bounding the left hand side of (3.4). Following [Ura16, Eq. (1.14)], it is
given by

A(g)(u, t, η) := sup
Ψ

∣∣∣∣∣∣
ˆ

R
g(x)

N∑
j=1

aj(x)Ψ
ξj(x),ξj+1(x)
t,η (x− u) dx

∣∣∣∣∣∣ , (u, t, η) ∈ X, (3.6)

with supremum being taken over all choices of truncated wave packets Ψ
ξ−, ξ+
t,η , that for each

t, η ∈ R+ × R are functions in S(R) parameterized by ξ−, ξ+ ∈ Ξ. We summarize the basic
defining properties of the truncated wave packets in Remark 3.5 below, and we refer to [Ura16]
for a precise definition.
The duality of the embeddings (3.5) and (3.6) is a consequence of the following wave packet
domination Lemma. We send to [Ura16] for the proof.

Lemma 3.3 (Wave packet domination). Let f, g, Ξ, ~ξ,~a be as above and consider the bilinear
form defined on the wave packets transforms, given by

B~ξ,~a(f, g) :=

ˆ
X
F (f)(u, t, η)A(g)(u, t, η) dudtdη. (3.7)

Then

Λ~ξ,~a(f, g) . B~ξ,~a
(
F (f), A(g)

)
with uniform implied constant.

Using the above Lemma, we see that inequality (3.4) and thus Theorem 3.1 will follow from the
bounds of the next proposition.

Proposition 3.4. Let p > r′ be fixed. For all f, g ∈ L∞(R) and compactly supported there exists
a sparse collection S = S(f, g, p) and an absolute constant K = K(p) such that

sup
N

sup
#Ξ≤N

sup
~ξ,~a

B~ξ,~a(f, g) ≤ K(p)
∑
I∈S
|I|〈f〉I,p〈g〉I,1 (3.8)

where ~ξ,~a range over ΞN+1,CN+1-valued functions as above.

We now make a brief digression to justify definitions (3.5) and (3.6) of the wave packet transforms
and the result of Lemma 3.3. Consider the term

ˆ ξj(x)

ξj−1(x)

f̂(η)eixηdη
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appearing in (3.4) and let us think for a moment of ξj−1(x) = ξ− and ξj(x) = ξ+ as frozen. Then
the following representation holds for the multiplier 1(ξ−,ξ+)(ζ):

1(ξ−,ξ+)(ζ) =

ˆ
R+×R

Ψ̂
ξ−,ξ+
t,η (ζ) dtdη (3.9)

where Ψ
ξ−,ξ+
t,η are truncated wave packets. Choosing a ϕ ∈ S(R) such that ϕ̂t,η(ζ) = 1 whenever

Ψ̂
ξ−,ξ+
t,η (ζ) 6= 0 for any ξ− < ξ+ ∈ R, we obtain the pointwise identity

ˆ ξj(x)

ξj−1(x)

f̂(ζ)eixζdζ =

ˆ
X
f ∗ ϕt,η(u)Ψ

ξj−1(x),ξj(x)
t,η (x− u)dudtdη.

The results of Lemma 3.3 follow by Fubini and the triangle inequality.
We briefly illustrate identity (3.9), for a more careful discussion we refer to [Ura16, Sec. 3].

Start by choosing ψ ∈ S(R) with ψ̂ non-negative and supported on a ball of radius b/2, and let
χ ∈ C∞0 (R) be a non-negative bump function supported on [d − ε, d + ε] with d > b and ε � b.
Suppose formally that ξ+ = +∞ so that, up to a suitable normalization of χ, a Littlewood-Paley
type decomposition centered at ξ− of the multiplier 1(ξ−,+∞) gives

1(ξ−,+∞)(ζ) =

ˆ
R+×R

ψ̂(t(ζ − η))χ(t(η − ξ−))dtdη.

A similar expression holds if ξ− = −∞ and ξ+ ∈ R. We choose truncated wave packets so that

Ψ
ξ−,ξ+
t,η (x) := ψt,η(x)χ(t(η − ξ−)) t(η − ξ−)� t(ξ+ − η)

Ψ
ξ−,ξ+
t,η (x) := ψt,η(x)χ(t(ξ+ − η)) t(η − ξ−)� t(ξ+ − η)

Ψ
ξ−,ξ+
t,η (x) := 0 η /∈ (ξ−, ξ+).

Finally if t(η − ξ−) ≈ t(ξ+ − η) then Ψ
ξ−,ξ+
t,η is chosen to appropriately model the transition

between the above regimes and justifies identity (3.9).

Remark 3.5. In general we call a function Ψ
ξ−,ξ+
t,η ∈ S(R) parameterized by ξ− < ξ+ ∈ R a

truncated wave-packet adapted to t, η ∈ R+ × R if

e−iηtztΨ
ξ−,ξ+
t,η (tx), t−1∂ξ−

(
e−iηtztΨ

ξ−,ξ+
t,η (tx)

)
, t−1∂ξ+

(
e−iηtztΨ

ξ−,ξ+
t,η (tx)

)
are uniformly bounded in S(R) as functions of x. Furthermore we require that Ψ̂

ξ−,ξ+
t,η be supported

on (η − t−1b, η + t−1b) for some b > 0. Finally, for some constants d, d′, d′′ > 0 and ε > 0 it
must hold that

Ψ
ξ−,ξ+
t,η 6= 0 only if

{
t(η − ξ−) ∈ (d− ε, d+ ε)

t(ξ+ − η) > d′ > 0
(3.10)

∂ξ+Ψ
ξ−,ξ+
t,η = 0 if t(ξ+ − η) > d′′ > d′ > 0.

3.3 Localized outer Lp embeddings

We now turn to the description of the analytic tools which are relied upon in the proof of estimate
(3.2). We work in the framework of outer measure spaces [DT15], see also [CDPO16; DPO15].
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In particular, we define a distinguished collection of subsets of the upper 3-space X which we
refer to as tents above the time-frequency loci (I, ξ) where I is an interval of center c(I) and
length |I|, and ξ ∈ R:

T(I, ξ) := T`(I, ξ) ∪ To(I, ξ),

To(I, ξ) := {(u, t, η) : tη − tξ ∈ Θo, t < |I|, |u− c(I)| < |I| − t}
T`(I, ξ) := {(u, t, η) : tη − tξ ∈ Θ \Θo, t < |I|, |u− c(I)| < |I| − t}

where Θo = [β−, β+], Θ = [α−, α+] are two geometric parameter intervals such that 0 ∈ Θo ⊂ Θ.
The specific values of the parameters do not matter. What is important that given the geometric
parameters of the wave packets appearing in (3.5) and (3.6) there exists a choice of parameters
of the tents such that the statements of the subsequent discussion hold. For example it must
hold that (−b, b) ⊂ Θo where b is the parameter that governs the frequency support of ψt,η and

Ψ
ξ−,ξ+
t,η . For a complete discussion see [Ura16, Sec. 2]. As usual, we denote by µ the outer

measure generated by countable coverings by tents T(I, ξ), I ⊂ R, ξ ∈ R via the pre-measure
T(I, ξ) 7→ |I|.
Let s be a size [DT15], i.e. a family of quasi-norms indexed by tents T, defined on Borel functions
F : X→ C. The corresponding outer-Lp space on (X, µ) is defined by the quasi-norm

‖F‖Lp(s) :=

(
p

ˆ ∞
0

λp−1µ(s(F ) > λ) dλ

) 1
p

, 0 < p <∞,

µ(s(F ) > λ) := inf
{
µ(E) : E ⊂ X, sup

T
s
(
F1X\E

)
(T) ≤ λ

}
where the supremum on the right is taken over all tents T = T(I, ξ). We will work with outer
Lp spaces based on the sizes

se(F )(T) :=

(
1

|I|

ˆ
T`
|F (u, t, η)|2 dudtdη

) 1
2

+ sup
(u,t,η)∈T

|F (u, t, η)|,

sm(A)(T) :=

(
1

|I|

ˆ
T

|A(u, t, η)|2 dudtdη

) 1
2

+
1

|I|

ˆ
To
|A(u, t, η)|dudtdη

that are related to the two embeddings (3.5) and (3.6) respectively. The dual relation of the
sizes se, sm is given by the fact that for any two Borel functions F,A : X→ C there holds

ˆ
T

|F (u, t, η)A(u, t, η)|dudtdη ≤ 2s`(F )(T)so(A)(T).

The abstract outer Hölder inequality [DT15, Prop. 3.4] and Radon-Nikodym type bounds [DT15,
Prop. 3.6] yield ˆ

T

|F (u, t, η)A(u, t, η)|dudtdη . ‖F‖Lσ(s`)‖A‖Lτ (so) (3.11)

whenever 1 ≤ σ, τ ≤ ∞ are Hölder dual exponents i.e. 1
σ + 1

τ = 1.
The nature of the wave packet transforms f 7→ F (f), g 7→ A(g) defined by (3.5), (3.6) is heavily
exploited in the stopping-type outer Lp-embedding theorems below. We state the embedding
theorems after some necessary definitions. It is convenient to use the notation

T(I) := {(u, t, η) : t < |I|, |u− c(I)| < |I| − t, η ∈ R}
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for the set of the upper 3-space associated to the usual spatial tent over I. Given an open set
E ⊂ R we associate to it the subset of T(E) ⊂ X given by

T(E) =
⋃
I⊂E

T(I) (3.12)

where the union is taken over all intervals I ⊂ E.
The first stopping embedding theorem, a reformulation of a result first obtained in [DPO15],
deals with the wave packet transform f 7→ F (f) of (3.5).

Proposition 3.6. Let 1 < p < 2, σ ∈ (p′,∞), then there exists K > 0 such that the following
holds. For all f ∈ Lploc(R), all intervals Q, and all c ∈ (0, 1) there exists an open set Uf,p,Q
satisfying

|Uf,p,Q| ≤ c|Q|,

such that ∥∥F (f13Q)1T(Q)\T(Uf,p,Q)

∥∥
Lσ(se)

≤ K|Q| 1σ 〈f〉3Q,p. (3.13)

The embedding theorem we use to treat the variationally truncated wave packet transform g 7→
A(g) of (3.6) stems from the main result of [Ura16].

Proposition 3.7. Let τ ∈ (r′,∞), then there exists K > 0 such that the following holds. For
all g ∈ L1

loc(R), all intervals Q and all c ∈ (0, 1) there exists an open set Vg,1,Q satisfying

|Vg,1,Q| ≤ c|Q|,

such that ∥∥A(g13Q)1T(Q)\T(Vg,1,Q)

∥∥
Lτ (sm)

≤ K|Q| 1τ 〈g〉3Q,1. (3.14)

We stress that the constant K in Proposition 3.7 does not depend on the parameters ~a, ~ξ,Ξ, N
appearing in the definition (3.6) of the map A.
The above two propositions appear in [Ura16] in a somewhat different form that uses the notion
of iterated outer measure spaces introduced therein. We derive the statement of Propositions 3.7
by using the weak boundedness on L1(R) of the map (3.6) of [Ura16, Theorem 1.3]. In particular
that result, applied to the function g13Q for λ = cK〈g〉3Q,1, yields a collection of disjoint open
intervals I and

Vg,1,Q :=
⋃
I∈I

I, |Vg,1,Q| ≤
C|Q|
K

so that (3.14) holds as required. We conclude by choosing K ≥ C/c. A similar procedure can be
used to obtain Proposition 3.6 from [Ura16, Theorem. 1.2].
In effect, we have shown that the formulation of the boundedness properties of the embedding
maps (3.5) and (3.6) as expressed in Propositions 3.6 and 3.7 are equivalent to the iterated
outer measure formulation of [Ura16]. Furthermore the use of iterated outer measure Lp norms
allowed us to bootstrap the above results to Lploc(R) generality from an a-priori type statement,
as illustrated in [Ura16, Section 2.1].

3.4 Proof of Proposition 3.4

Throughout this proof, the exponent p ∈ (r′,∞) is fixed and all the implicit constants are allowed
to depend on r, p without explicit mention. Since the linearization parameters play no explicit
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role in the upcoming arguments we omit them from the notation, assume them fixed and simply
write B(f, g) for the form B~ξ,~a(f, g) defined in (3.7). Given any interval Q, we introduce the
localized version

BQ(f, g) :=

ˆ

T(Q)

F (f)(u, t, η)A(g)(u, t, η) dudtdη. (3.15)

3.4.1 The principal iteration

The main step of the proof of Proposition 3.4 is contained in the following lemma, which we will
apply iteratively.

Lemma 3.8. There exists a positive constant K such that the following holds. Let f, g ∈ L∞(R)
and compactly supported, and Q ⊂ R be any interval. There exists a countable collection of
disjoint open intervals IQ such that⋃

I∈IQ

I ⊂ Q,
∑
I∈IQ

|I| ≤ 2−12|Q| (3.16)

and such that

BQ(f13Q, g13Q) ≤ K|Q|〈f〉3Q,p〈g〉3Q,1 +
∑
I∈IQ

BI(f13I , g13I). (3.17)

The proof of the lemma consists of several steps, which we now begin. Notice that there is no
loss in generality with assuming that f, g are supported on 3Q: we do so for mere notational
convenience.

Construction of IQ
Referring to the notations of Section 3.3, set

Ef,Q = Uf,p,Q ∪
{
x ∈ R : Mpf(x) > c−1〈f〉3Q,p

}
,

Eg,Q = Vg,1,Q ∪
{
x ∈ R : M1g(x) > c−1〈g〉3Q,1

}
,

EQ = Q ∩ (Ef,Q ∪ Eg,Q) .

Write the open set EQ as the union of a countable collection I ∈ IQ of disjoint open intervals.
Then (3.16) holds provided that c is chosen small enough. Also, necessarily 3I ∩ EcQ 6= ∅ if
I ∈ IQ, so that

inf
x∈3I

M1f(x) . 〈f〉3Q,p, inf
x∈3I

M1g(x) . 〈g〉3Q,1. (3.18)

For further use we note that, with reference to the notations of Propositions 3.6 and 3.7,

T(Q) \ T(EQ) ⊂ T(Q) \ (T(Uf,p,Q) ∪ T(Vg,1,Q)) (3.19)

This completes the construction of IQ.

Proof of (3.17)

We begin by using (3.12) to partition the outer integral over T(Q) as

BQ(f, g) ≤
ˆ

T(Q)\T(EQ)

F (f)A(g) dudtdη +
∑
I∈IQ

BI(f, g) (3.20)
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Choosing τ ∈ (r′, p), the dual exponent σ = τ ′ ∈ (p′,∞). By virtue of (3.19), we may apply the
outer Hölder inequality (3.11) and the embeddings Propositions 3.6 and 3.7 to control the first
summand in (3.20) by an absolute constant times∥∥F (f)1T(Q)\T(Uf,p,Q)

∥∥
Lσ(s`)

∥∥A(g)1T(Q)\T(Vg,1,Q)

∥∥
Lτ (so)

. |Q|〈f〉3Q,p〈g〉3Q,1.

We turn to the second summand in (3.20), which is less than or equal to∑
I∈IQ

BI(f13I , g13I) +
∑

(a,b)∈{in,out}2
(a,b) 6=(in,in)

∑
I∈IQ

BI(f1Ia , g1Ib).

where I in = 3I, Iout = 3Q \ 3I. The first term in the above display appears on the right hand
side of (3.17). We claim that∑

I∈IQ

BI(f1Ia , g1Ib) . |Q|〈f〉3Q,p〈g〉3Q,1, (a, b) 6= (in, in) (3.21)

thus leading to the required estimate for (3.17). Assume a = in, b = out for the sake of definite-
ness, the other cases being identical. Fix I ∈ IQ. We will show that

BI(f1I in , g1Iout) . |I|〈f〉3Q,p〈g〉3Q,1. (3.22)

whence (3.21) follows by summing over I ∈ IQ and taking advantage of (3.16).

Proof of (3.22)

We introduce the Carleson box over the interval P

box(P ) =
{

(u, t, η) ∈ X : u ∈ P, 1
2 |P | ≤ t < |P |

}
Fix I ∈ IQ. At the root of our argument for (3.22) is the fact that supp g1Iout lies outside 3I.
This leads to the exploitation of the following lemma, whose proof is given at the end of the
paragraph.

Lemma 3.9. Let P be any interval, h ∈ Lploc(R), and τ, σ as above. There holds

‖A(h)1box(P )‖Lτ (sm) . |P |
1
τ

(
1 +

dist(P, supph)

|P |

)−100

inf
x∈3P

M1h(x), (3.23)

‖F (h)1box(P )‖Lσ(se) . |P |
1
σ

(
1 +

dist(P, supph)

|P |

)−100

inf
x∈3P

Mph(x). (3.24)

Now let P ∈ Pk(I) be the collection of dyadic subintervals of I with |P | = 2−k|I|. If P ∈ Pk(I)
there holds dist(P, Iout) ≥ |I| = 2k|P |. Moreover∑

P∈Pk(I)

|P | = |I|, inf
x∈3P

M1h(x) . 2k inf
x∈3I

M1h(x)

for all locally integrable h. Since

T(I) ⊂
∞⋃
k=0

⋃
P∈Pk(I)

box(P )
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we obtain, using the outer Hölder inequality (3.11) to pass to the third line, the chain of inequal-
ities

BI(f1I in , g1Iout) ≤
∑
k≥0

∑
P∈Pk(I)

ˆ

box(P )

F (f1I in)A(g1Iout) dudtdη

≤
∑
k≥0

∑
P∈Pk(I)

‖F (f1I in)1box(P )‖Lσ(se)‖A(g1Iout)1box(P )‖Lτ (sm)

.
∑
k≥0

∑
P∈Pk(I)

|P |
(

inf
x∈3P

Mpf(x)

)(
2−99k inf

x∈3P
Mpg(x)

)

≤
∑
k≥0

2−98k
∑

P∈Pk(I)

|P |
(

inf
x∈3I

Mpf(x)

)(
inf
x∈3I

M1g(x)

)
. |I|

(
inf
x∈3I

Mpf(x)

)(
inf
x∈3I

M1g(x)

)
which, by virtue of (3.18), complies with (3.22).

Proof of Lemma 3.9. We show how estimate (3.23) follows from Proposition 3.7. Then, (3.24) is
obtained from Proposition 3.6 in a similar manner. By quasi-sublinearity and monotonicity of
the outer measure Lτ (sm) norm we have that

‖A(h)1box(P )‖Lτ (sm)

≤ C‖A
(
h19P

)
1box(P )‖Lτ (sm) +

∞∑
k=3

Ck‖A
(
h13kP\3k−1P

)
1box(P )‖Lτ (sm).

(3.25)

Applying the embedding bound (3.14) with c = 3−2 and Q = 3P provides us with Vh,1,3P such
that box(P ) ⊂ T(9P ) \ T(Vh,1,3P ), whence

‖A
(
h19P

)
1box(P )‖Lτ (sm) ≤ CK|P |

1
τ 〈h〉9P,1 ≤ CK|P |

1
τ inf
x∈3P

M1h(x).

Indeed, we chose c in such a way that |Vh,1,3P | < 3−1Q, which guarantees that T(Vh,1,9P ) does
not intersect box(P ). We claim that similarly we have that for k > 2 and for an arbitrarily large
N � 1 there holds

‖A
(
h13kP\3k−1P

)
1box(P )‖Lτ (sm) ≤ CK3−Nk|P | 1τ 〈h〉3kP,1 ≤ CK|P |

1
τ 3−Nk inf

x∈3P
M1h(x).

Let
(u, t, η) 7→ Ψ

ξ−,ξ+
t,η (· − u)

be a choice of truncated wave packets which approximately achieves the supremum in

A(h13kP\3k−1P )(u, t, η),

cf. (3.6). Then

Ψ̃
ξ−,ξ+
t,η (· − u) :=

(
1 + |(x−u)−c(P )|

|P |

)2N

Ψ
ξ−,ξ+
t,η (· − u)

are adapted truncated wave packets as well since multiplying by a polynomial does not change the

frequency support of Ψ
ξ−,ξ+
t,η and so the conditions on being truncated wave packets is maintained.

Let Ã(h13kP\3k−1P )(u, t, η) be the embedding obtained by using the wave packets Ψ̃
ξ−,ξ+
t,η (· − u)

instead of Ψ
ξ−,ξ+
t,η (· − u). Given that (u, t, η) ∈ box(P ) we have that

|A(h13kP\3k−1P )(u, t, η)| ≤ C3−2NkÃ(h13kP\3k−1P )(u, t, η).
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However the bounds (3.14) also hold for Ã with an additional multiplicative constant that de-
pends at most on N . Applying these bounds with P = 3k−1Q and c = 3−k we have once again
that

‖Ã(h13kP\3k−1P )1box(P )‖Lτ (sm) ≤ CK|P |
1
τ 3k〈h〉3kP,1.

As long as N is chosen large enough with respect to C > 1 appearing in (3.25), the above display
gives the required bound. The decay factor in term of dist(P, supph) follows from the fact that
the the first k0 terms in (3.25) vanish if supph ∩ 3k0P = ∅.

3.4.2 The iteration argument

With Lemma 3.8 in hand, we proceed to the proof of Proposition 3.4. Fix f, g ∈ L∞(R) with
compact support. By an application of Fatou’s lemma, it suffices to prove (3.8) with BQ0 in lieu
of B for an arbitrary interval Q0 with supp f, supp g ⊂ Q0. That is, it suffices to construct a
sparse collection S such that

BQ0(f, g) ≤ C
∑
I∈S
|I|〈f〉I,p〈g〉I,1 (3.26)

provided that the constant C does not depend on Q0. We fix such a Q0. Furthermore, as

BQ0
(f, g) = sup

ε>0
BQ0,ε(f, g), BQ,ε(f, g) :=

ˆ
T(Q)

F (f)(u, t, η)A(g)(u, t, η)1{t>ε} dudtdη

it suffices to prove (3.26) with BQ0,ε replacing BQ0 , with constants uniform in ε > 0. We also
notice that Lemma 3.8 holds uniformly, if one replaces all instances of BQ in (3.15) by BQ,ε.
From here onwards we fix ε > 0 and drop it from the notation.
We now perform the following iterative procedure. Set S0 = {Q0}. Suppose that the collection
of open intervals Q ∈ Sn has been constructed, and define inductively

Sn+1 =
⋃
Q∈Sn

IQ

where IQ is obtained as in the Lemma 3.8. It can be seen inductively that

Q ∈ Sn =⇒ |Q| ≤ 2−12n|Q0|.

We iterate this procedure as long as n ≤ N , where N is taken so that 2−12N |Q0| < ε holds. At
that point we stop the iteration and set

S? =

N⋃
n=0

Sn.

Making use of estimate (3.17) along the iteration of Lemma 3.8 we readily obtain

BQ0
(f, g) .

N−1∑
n=0

∑
Q∈Sn

|Q|〈f〉3Q,p〈g〉3Q,1 +
∑
Q∈SN

∑
I∈IQ

BI(f13I , g13I) =
∑
Q∈S?

|Q|〈f〉3Q,p〈g〉3Q,1

as each term BI , I ∈ SN vanishes by the condition on N . Now, observing that the sets

XQ := Q \

 ⋃
I∈S?:I(Q

I

 = Q \

 ⋃
I∈IQ

I

 Q ∈ S?

are pairwise disjoint and, from (3.16), |Q\XQ| ≥ (1 − 2−12)|Q| yields that S? is sparse, and so
is S = {3Q : Q ∈ S?}. This completes the proof of Proposition 3.4.



Acknowledgements

I would like to thank my advisor, Prof. Dr. Christoph Thiele, for his invaluable guidance and
for making this work possible. He has always been very generous with the time he dedicated to
me, listening to my ideas and suggesting new ones. Furthermore, his method of discussion, very
maieutic in nature, was crucial for bringing out new and interesting ideas, clearing up miscon-
ceptions, but at the same helped to build up my confidence in tackling challenging problems.
Prof. Thiele managed to be an excellent advisor also on a personal level, striking what I feel is
a perfect balance between giving me suggestions and leaving space for independent inquiry. His
advice on personal issues and on how to navigate the environment of academia was a priceless
gift for a person who aims to be part of it some day. For all this, I am very grateful.
I would also like to thank my Master’s advisor, Prof. Fulvio Ricci, who made me discover the
wonderful field of mathematics that I work in. He has always been very supportive, even after I
came to Bonn.
Finally, this thesis would not have been possible without Prof. Francesco Di Plinio. His friendly
demeanor, an intense passion for the subject, and the trust that he accorded me makes him an
extraordinary colleague and mentor.
I would need to write another thesis to be able to fully express my due gratitude to all the
people who have accompanied me in this endeavor. I was lucky that the people around me made
it possible for me to wake up every morning with a smile, looking forward to come to work to
learn about mathematics and to work in an environment in which I felt valued, but also to which
I felt that I could contribute with my presence.
I also wish to thank my family. I am ever in their debt for laying the foundations that I rely on
every day.



88



Bibliography

[BB17] David Beltran and Jonathan Bennett.
”
Subdyadic square functions and applica-

tions to weighted harmonic analysis“. In: Adv. Math. 307 (2017), pp. 72–99. issn:
0001-8708. doi: 10.1016/j.aim.2016.11.018. url: http://dx.doi.org/10.
1016/j.aim.2016.11.018.
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and the theory of Rubio de Francia. Vol. 215. Operator Theory: Advances and
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